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CHAPTER 1

INTRODUCTION

It is well known that the electromagnetic (EM) scattering
properties of a body are a function of both, its geometrical and
electrical (or material) parameters, In the last few years, there has
been a renewed interest in understanding the effect of the material
properties of a body on its EM scattering behavior. This subject is of
great importance in many applications. Radar absorbing materials are
often used to cover taréets in order to reduce their EM scattering;
however, in most cases the materials are designed to reduce the specular
contributions [1] from the body without taking into account the
diffraction from edges of the absorber coatings, creeping waves, and
surface waves on the coatings. Thus, it is(necessary to examine the
effect that the material properties have on these non-specular
contributions to the scattered field which may dominate over a certain
range of aspects. Figure 1.1 shows an aircraft which is covered by an
absorber in several places to control its EM echo area. VFurthermore,
since a typical airplane has many antennas mounted on its surface, the

absorbers, which are not perfectly conducting materials,.will have an
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Figure 1,1, Absorber coated aircraft.




important effect on the radiation patterns of the antennas. As
mentioned in Reference [2], when the radiation pattérns of antennas
mounted on a small private aircraft were being studied, it was found
that the windshield scattering was a major contributor to the total
pattern.

Single layer and multilayered coated surfaces have been
investigated using a transmission line approach [3], hbwever, this
approach does not consider diffraction effects. Computer programs have
also been developed [4,5] to solve the integral equations for the
surface fields on two-dimensional bodies subject to the impedance

boundary conditions. These programs can calculate the values of

various shapes.

Another important approach to solve these types of problems are the
high frequency approximation techniques such as the geometrical theory
of diffraction (GTD) and its uniform version, the uniform geometrical
theory of diffraction (UTD) which has been used with great success to
solve a wide variety of electromagnetic problems. One great advantage
of high frequency solutions such as UTD over other types of solutions is
that complex structures can be modelled by simpler ones whose solutions
are known,

The Geometrical Theory of Diffraction (GTD) was developed around
1951 by J.B. Keller [6,7,8]. The GID is a significant extension of
classical geometrical optics (GO) in which a class of diffracted rays
are systematically introduced in addition to the usual GO rays.

According to the GTD, diffracted rays originate from certain localized



regions of a radiating/scattering structure such as at discontinuities
in the geometrical and electrical properties of the structure.
Furthermore, diffracted rays can also be produced at points of grazing
incidence on a smooth convex surface. The diffracted rays, like the
ordinary GO rays, satisfy the generalized Fermat's principle [6]
proposed by Keller,

The initial value of a diffracted ray is given in terms of a
diffraction coefficient which plays a role analogous to the reflection
and transmission coefficients of the GO reflected and transmitted rays.
These diffraction coefficients can be found from the asymptotic
solutions to appropriate canonical problems, i.e., half-plane. These
canonical problems are usually simple geometries which locally simulate
parts of a complex structure that dominate the reflection, transmission
and diffraction effects.

One defect of the GTN is that it fails in the transition region
adjacent to shadow and reflection boundaries. In order to overcome this
and other limitations, the uniform geometrical theory of diffraction
(UTD) has been introduced [9,10,117. The UTD requires that the
diffracted field compensate the discontinuity in the GO field at the
shadow and reflection boundaries so that the total high-frequency field
is continuous everywhere away from the radiating or scattering body. It
is noted that the diffracted field generally assumes its largest value
near these boundaries where the GTD fails, |

The object of this study is to obtain an approximate UTD solution

to the problem of scattering by a thin dielectric/ferrite half-plane




either by/itself or when it is placed on a perfect conductor of
electricity or magnetism as shown in Figures 1.2 and 1.3. The
half-plane in Figures 1.2 and 1,3 can be excited by either an obliquely
incident EM plane or surface wave field., In the present work, the
thickness of the dielectric/ferrite half-plane is restricted so that
only the dominant TE and TM type surface wave fields can exist at any
given operating frequency. This problem has many applications in the
study of diffraction by dielectric/ferrite obstacles with edges as
shown in Figure 1.1, and in the theory of surface wave antennas.
Furthermore, it is an important canonical probleh for the UTD since it
extends the UTD edge diffraction solutions from perfectly conducting to

+ha canliidsanm
LIIT JviTuLiIiun

to the
problem of the diffraction by the dielectric/ferrite half-plane of
Figure 1.2 will be synthesized from the solutions to the related
problems of the diffraction by a dielectric/ferrite half-plane of half
the original thickness when it is placed on perfectly conducting
electric or magnetic surfaces of infinite extent as depicted in Figure
-1,3. This geometry pertaining to the latter set of problems, which is
referred to throughout this report as the dielectric/ferrite bisection,
can be excited by either an obliquely incident plane or surface wave
field,

An interesting phenomenon which does not take place in the case of
diffraction by a perfectly conducting half-plane is the coupling between
the TE and TM modes which is present in the dielectric/ferrite
half-plane case. This coupling exists only for an obliquely incident

field, Thus, for the special case of normal incidence on the edge,



Obliquely indident surface wave field.

Figure 1.2, Dielectric/ferrite half-plane problem. Note that TE and T™M
signify that both a transverse electric and magnetic
polarizations are included in the total solution.




which is depicted in Figure 1.4, there is no coupling between the TE and
TM modes and obviously its solution is less complicated,

The problem of the diffraction by a die1ectric.ha1f-p1ane has been
studied by several authors in the past. Pistol'kors [12] uses the
Fresnel reflection coefficient of the dielectric half-plane in a vector
Kirchhoff approximation. His solution violates reciprocity except in
the shadow boundary directions, and he does not include surface waves.
Khrebet [13] also uses the Fresnel reflection coefficient to
approximately satisfy the boundary conditions on the field which in turn
is expressed in terms of an integral representation similar to
Oberhettinger's half-plane diffraction integral [14]. As in
Pistol'kor's case, the solution obtained by Khrebet also does not
include surface waves, and it does not satisfy reciprocity except in the
directions of the shadow boundaries. Mohsen and Hamid [15,16] solved
the problem of the diffraction by a dielectric loaded, perfectly
conducting wedge. Their solution is similar to Khrebet's solution

~except that they use the more general Oberhettinger wedge diffraction
type integral. More recently, Anderson [17] has solved the problem of
the diffraction by a thin dielectric ha]f—piane by replacing the
dielectric with an equivalent polarization current sheet. He solves only
for the TM, polarization using the Wiener-Hopf procedure, and his
solution can not be directly extended to the other polarization.
Furthermore, Anderson considers only the special case of normal
incidence. Burnside [2] has proposed a heuristic extension of the UTD

solution for a perfectly-conducting wedge to treat the diffraction by a




Obliquely incident surface wave field.

Figure 1.3, Dielectric/ferrite bisection problem, Note that PEC and
PMC indicate, respectively, a perfect conductor of
electricity and magnetism,
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Figure 1.4, Normal incident case.




lossless dielectric half-plane by incorporating the Fresnel reflection
and transmission coefficients for a dielectric slab. This solution
which is somewhat similar to that in [13,15,16] has been shown [18,19]
to give good accuracy for angles of incidence away from grazing.
However, it also does not satisfy reciprocity away from the optical
shadow boundaries and it does not include the surface waves excited at
the edge of the half-plane, which are important in many applications.
Nevertheless, unlike the previous two-dimensional solutions [13,15,16],
the solution in [2] has been developed to approximately analyze both the
two dimensional as well as the three-dimensional case of obliquely
incident EM plane and spherical waves on the edge of a dielectric
half-plane.

As mentioned earlier, the solution to the problem of the
diffraction by a dielectric/ferrite half-plane in Figure 1.2 is
synthesized in the present work from the solutions to the bisection
problems shown in Figure 1.3, which can have an even or odd excitation,
The dielectric/ferrite bisection (DFB) problem is still a fairly
complicated problem, so the solution to the DFB problem of Figure 1.3 is
obtained approximately via UTD considerations from the solution to the
related problem of the diffraction by a two-part planar surface in which
one part is a perfect conductor (of electricity or magnetism) and the
other part is an impedance surface as shown in Figure 2.5. The new
geometry, which is depicted in Figure 2.5, is referred to as the
impedance bisection and it is amenable to solution by the Wiener-Hopf

technique., Since it is desirable to deal with a scalar problem rather
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than a vector problem, the scalarization of the impedance bisection
problem is addressed in Chapter II together with the details of the
original DFB problem. It is shown that the field or vector potential
components that scalarize the vector problem depend on whether the
incident field is obliquely or normally incident on the edge.

As stated before, there is no coupling between the TE and TM fields
for the special case of normal incidence, which makes it simpler than
the more general case of oblique incidence. Thus, in Chapter III, the
impedance bisection problem for the case of normal incidence is solved
first, using the Wiener-Hopf method. The Wiener-Hopf equation is
obtained by Jones' method, which is briefly described in Section D of
Chapter II. It is shown that the solutions to the Wiener-Hopf equations
for both TE, and TM; polarizations can be expressed as integrals, which
in general can not be ihtegrated in closed form; here, z is parallel to
the edge formed by the impedance discontinuity. Next, the integrals are
evaluated asymptotically by the saddle point method.

The more general case of oblique incidence is discussed in Chapter
IV. It is shown that identical Wiener-Hopf equations to the ones
obtained in Chapter III are also obtained fdr the field components Ey
and Hy which are normal to the surface. However, because of the
different edge behavior of the normal field components Ey and Hy in the
3-D case as compared to those of the tangential components E, and H,
used in the 2-D case, the final solutions are not the same in these two

cases. Furthermore, it is shown that the edge condition requires that
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there be a coupling between the TMy and TEy fields as mentioned above.
The integral expressions for the fields Ey and Hy are then evaluated
asymptotically by the saddle point method in Chapter IV.

Having obtained the solutions for the simpler impedance bisection
problem, the next task is to modify them according to the UTD recipe so
as to arrive at an approximate but accurate solution to the problem in
Figure 1.3 and then subsequently synthesize the solution to the problem
in Figure 1.2. In Chapter V, two methods are discussed for obtaining
the DFB solutions from the impedance bisection solutions already
obtained in Chapters III and IV. The first method addresses the problem
of obtaining a value for the impedance ZS in terms of the permeability,
permittivity, and thickness of the grounded dielectric/ferrite
half-plane., The second method, which is considered more accurate than
the first one, starts by casting the impedance bisection solutions into

the UTD form involving reflection and diffraction coefficients, and also
> >

the surface wave propagation (;p) and attenuation (ca) vectors,
> >
respectively. Note that the vectors, Cp and g, can be easily obtained

from the surface wave field parameters B and a. The reflection
coefficients, and the surface wave constants a and 8 of the IBS are
replaced by the corresponding exact coefficients for the grounded
dielectric/ferrite slab case which are well known. It is noted that
for a specific €ps Mps and kd, the a and B must be computed from the
roots of a transcendental equation. Once this is done, the exact
geometrical optics field for the grounded dielectric/ferrite slab is
obtained., Also, the resulting diffracted field for the

dielectric/ferrite bisection (DFB) case of Figure 1.3 maintains
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continuity of the total field at the reflection shadow boundary.
However, an additional minor modification is introduced heuristically in
the resulting diffracted field so that it now also satisfies
reciprocity.

Since the final goal of this study is to obtain the solution for
the half-plane problem of Figure 1.2, Chapter VI discusses the manner in
which the dielectric/ferrite bisection solutions are superposed to
obtain the solution for this dielectric/ferrite half-plane problem.
Furthermore, it is also shown in this chapter how the geometrical
optics and diffracted fields can be written in a compact form by
expressing these fields in their natural "ray-fixed" coordinate systems.

In order to verify the accuracy of the results for the half-plane
problem of Figure 1,2, the UTD solutions developed in this study are
used to compute the scattering by a dielectric/ferrite strip which can
be excited by either a plane wave or a line source. These solutions are
compared with the solutions obtained via the moment method (MM).

Chapter VII discusses the moment method solution for a dielectric strip.
In this chapter, the impedance matrix is computed for the general case
of oblique incidence by a plane wave of TE of T polarization. It is
shown that the impedance matrix can be simplified when the plane wave is
normally incident or for the case of line source excitation.

In Chapter VIII, the UTD solutions for the dielectric strip are
compared with the independent moment method solutions, and both results
are shown to agree very well. It is shown how the UTD solutions give
insight into the type of scattering that occurs from the strip.

Examples are shown, where by adding more surface wave interactions on
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the strip, the agreement between the UTD and moment method so]utions
improves for near grazing angles of incidence on the strip, As
expected, these surface wave effects become significant for grazing
angles of incidence and diffraction. Thus, a useful characteristic of
the UTD technique is identified, which is that the UTD provides a means
of pinpointing the significant contributions to the total scattered
field that can arise from different parts of a complex structure,
Furthermore, the limitations of the new UTD solutions obtained in
Chapters 1IT through VI and further areas of research related to this
topic are also discussed in Chapter VIII, Finally, in Appendices A
through L, various analytical details are given,

Note that a dielectric/ferrite slab can sustain several surface
wave modes. However, as mentioned in the beginning, it is assumed in
this study that the thickness, permittivity, and permeability of the
slab are adjusted such that only the lowest order (even) surface wave
mode can propagate. Under this restriction, the solution of the
half-plane problem may be constructed approximately with the assumption
that the dielectric/ferrite half-plane has one equivalent diffracting
edge only, even though a half-plane of finite thickness has actually
two edges instead of one. It is found that very accurate solutions for
engineering applications can be obtained under this approximation when
the thickness does not exceed one quarter of a wavelength inside the

dielectric/ferrite medium.,
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Before proceeding to the development of the UTD solutions for the
problems in Figures 1,2 and 1.3, it is worthwhile at this juﬁcture to
comment on the notation and time convention employed in this work,

Since the Wiener-Hopf technique is heavily used in the development
which follows, the time convention e-Tuwt will be adopted for ease of
notation and suppressed from now on, As a result of this convention,
Maxwell's equations in a homogeneous, isotropic and source-free region

take the following form:

> . > . V]

YXE=19wp H = 1kn0 (1.1)
> . > . g

VxH=-iwe E = -1kY0 (1.2)
>

VeeE=0 (1.3)
’

VeH=0 ’ (1.4)

> >
where E is the electric field, H is the magnetic field, w is the angular

frequency, n_ is the free-space impedance, and Y0 is the free-space

(o}
admittance.

The dielectric/ferrite media to be considered here can be
completely specified by the complex permeability u and complex

permittivity e which are complex numbers in the first quadrant such that

m
|

= ¢' + i¢" with (e'y, ") >0 . (1.5)
and

u' + ip"  with (u'y ") > 0 . (1.6)

=
n
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The complex wave number k is also located in the first quadrant, and it
is written as
k = kr + ik

p with (k., k;) >0 . (1.7)

Because the Fourier transform will be used throughout this report,
it is convenient to discuss the notation at this point. The function
;(s) will denote the Fourier transform of the spatial domain function
f(x). The Fourier Transform in the complex s-plane is defined in

Appendix A where its most important properties relevant to the

Wiener-Hopf technique are summarized.
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CHAPTER II

FORMULATION OF THE PROBLEM

A. STATEMENT OF THE PROBLEM

As mentioned in Chapter I, the main canonical problem considered
here is the EM diffraction by a thin dielectric/ferrite half-plane as

shown in Figure 1,2 which is excited by a plane or surface wave field,

. . .
+n +h
It is, of course, on to this canon

in Figure 1.2 is synthesized in terms of the other two related canonical
problems depicted in Figure 1.3. First, consider the case of plane wave
excitation as illustrated in Figure 2.1, where ui is the plane wave
incident on the dielectric/ferrite half-plane and (”1’“2)’ as defined
below, represent the total field at the observation point (x,y,z). It
~will be shown in Sections B and C, where the vector problem is
scalarized, that for the case of oblique incidence on the edge of the

half-plane, it is convenient to define u1, u; and u, as

u(xy,2) = Ey(x,y,2) o Hy(x,y,2) (2.1)

up(x,y,2z) = E (x,y,2) (2.2)
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OBSERVATION
POINT $=T-¢

Figure 2,1, Dielectric/Ferrite Half-plane Geometry.
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uy(x,y,z) = Hy(x,y,Z) . : (2.3)

Note that both E.y and Hy are non-zero for oblique incidence, because a

coupling occurs between these two field components.
On the other hand, for the special case of normal incidence to the

edge of the half-plane, it is convenient to define u1, uy and u, as:

ul (x,y,2) = u'(x,y) = E;(x,y) or Hl(x,y) (2.4)
uy (x,y,2) = up(x,y) = ulx,y) = E (x,y) or H,(x,y) (2.5)
uy(x,y) =0 . (2.6)

It is clear from the definitions in Equations (2.4), (2.5) and
(2.6), that ui, uy and u, are replaced by ui and u only, It is shown
later that no coupling exists between Ez and HZ for the case of normal
incidence because one can deal independently with either Ez alone or Hz
alone, respectively.

Specifically, the approach for solving the half-plane diffraction
problem of Figure 2.1 consists of the following steps. First of all,
the incident field is expreésed as the superposition of four incident
plane waves as indicated in Figure 2.2, In other words, the original
problem is expressed as the superposition of even and odd excitations.

It follows that the total fields ui and ug are even functions of y,

that is

uT(x,y,2) = uj(x,-¥,2) (2.7)
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us(x,y,z) = U3 (x,-y,2) (2.8)
while the fields ”? and ug are odd functions of y such that

ug(x,y,Z) = -ug(x,-y,Z) (2.9)
U(x,¥52) = ~Up(x,-y,2) . (2.10)

Because of Equations (2.7) through (2.10) the configuration with
symmetrical or even excitation will be referred to as the even problem,
while the configuration with the asymmetrical or odd excitation will be
referred to as the odd problem. Due to the even and odd symmefry of the
solutions, it is enough to solve the even and odd problems for the
half-space y»0.

After solving the even and odd problems individually, the total
field u(x,y,z) is obtained by a simple superposition of u€ and °.

Thus,

uy(x,y,2) = ug(x,ly[,2) + sign(y)u(x,|y|,z) (2.11)

and

Up(x,¥,2) = up(x,|yl,2) + sign(y)uy(x,ly|,z) . (2.12)

Using image theory [20], one can obtain problems equivalent to the
even and odd configurations as depicted in Figure 2.3. The
configuration corresponding to the even problem will be referred to as
the even bisection problem, while the configuration pertaining to the

odd problem will be referred to as the odd bisection problem,
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Next, consider the case of surface wave excitation. As in the case

of plane wave excitation,

u1SW( E15W(x’y,z) or Hy1sw(X,y,Z) (2.13)

X,Y,2) = y

for oblique incidence, or

isw isw
u (

; S () (2.14)

x,y) = E_>"(x,y) or H
for the special case of normal incidence.

It is well known [21] that surface wave modes guided along a
dielectric/ferrite slab can be classified as even or odd modes. Thus,
an equivalent problem for an even mode incident surface wave field is
the even bisection problem shown in Figure 2.4, On the other hand, if
the incident surface wave is an odd mode, the equivalent problem is the
odd-bisection problem which is also depicted in Figure 2.4.

The even and odd bisection problems are still fairly complicated,
so the next step in this procedure is to temporarily replace the thin
grounded dielectric/ferrite slab by an impedance wall as shown in Figure
2.5. The reason for doing this is because the simpler impedance
boundary contains all the essential characteristics of the thin grounded
dielectric/ferrite slab and because the latter impedance configuration
can be analyzed directly by the Wiener-Hopf procedure. This technique of

replacing the original boundary value problem by an approximate
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ASYMMETRICAL EXCITATION

Figure 2.3. Symmetrical and asymmetrical configurations are replaced by
the even and odd dielectric/ferrite bisections,
respectively.
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impedance boundary condition, also known as the Leontovich boundary
condition, has been used extensively in the past [21,22,23]. It has
been found that the surface impedance boundary conditions provide a
useful model in analyzing the effect of the material properties e, and
up on edge diffraction. Once the solutions to the two part impedance
problems in Figure 2.5 are obtained, they can be modified heuristically
via the UTD recipe to arrive at the solutions to the canonical
dielectric/ferrite bisection problems of Figures 2.3 and 2.4, or of
Figure 1.3. Finally, the solution to the canonical problem in Figure
1.2 can be constructed directly via a superposition of the even and odd

bisection solutions,

B. SCALARIZATION OF THE 3-D VECTOR PROBLEM (OBLIQUE INCIDENCE)

The canonical problem that is considered in this section is
> >
illustrated in Figure 2.6, The electric field E and magnetic field H

satisfy the Helmholtz vector equation

2 2,2 _
(v +Kk)E=0 , ¥y >0, |x| and |z|<= (2.15)

and

+
(2 + kZ) H=0 , ¥y >0, |x] and |z|<e (2.16)

where k is the free space wave number which is given by

k = )\_ = /uogo o (2.17)
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Figure 2.4, Even and odd incident surface wave,
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The fields E and ﬁ also satisfy the following boundary conditions:

>

> A > ~ >
E-(yE)y =2,y xH

or

m
i
N
I

-
m
1]

z S X

x<0,y

-Z_H x <0,y

0, |z|<e (2.18)

0, |z|<= (2.19)

which constitute the impedance or Leontovich boundary conditions and

9 X E =0 x>0, y=0, |z]<= (2.20)
or

Ex = 0; EZ =0 , x>0,y =0, |z|<e (2.21)
on a perfect eiectric conductor, When the region {x > 0, y = 0, |z|<=},
is a perfect magnetic conductor, one requires

; x H =0 , x>0,y=0, |z|<= (2.22)
or

Hx = 0; Hz =0 , x>0,y=0, |z|< . (2,23)

It is simpler to solve a scalar problem than a vector problem, thus, the

goal of this section is to scalarize the canonical problem depicted in

Figure 2.6.

In other words, it is desirable to have decoupled scalar

boundary conditions, and scalar differential equations. This can be

accomplished in two ways:

(1) Choose the normal field components (Ey, Hy) to decouple the

Leontovich boundary condition,
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Figure 2.6. Impedance Bisection Geometry.
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To prove this statement, one starts with Maxwell equations in a
source-free, homogeneous, isotropic medium. These equations are given
in (1.1) through (1.4).

Next, the tangential derivatives of Equation (2.19) are taken.

That is, the derivatives with respect to x and z such that

oz = L 35 for x <0, y =0, |z|<= (2.24)
3E, 3Hy
—az—- = -ZS -a-z—- for x <0, y =0, |ZI<°° (2.25)
ar aH

.,“_x vllz

ax - ZS ™ for x <0, y =0, |z|<» (2.26)
3, aHy
TX = -ZS —8-; for x <0, y =0, |Z|<°° . (2-27)

Adding Equations (2.25) and (2.26) and using Equation (1.2), one gets

Ey  OF, Hy ok Zs
5 * 7oz = I Bx—iz— = ik Ty Ey (2.28)

X <0,y =0, |z|¢=,

Subtracting Equation (2.27) from Equation (2.24), and using
Equation (1.1) yields

3E,  oF, Hy 3k
Bz - 3 = ikngHy = Zg 3?“‘*3?“2] . (2.29)

X <0, y=0,|z|[<e,
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Substituting Equation (1.3) into the left-hand side of Equation

(2.28), one finally obtains

aE Z
ot ik B =0 ,  x<0,y=0, |zj¢= (2.30)

which is one of the decoupled Leontovich boundary conditions. The other
decoupled boundary condition is obtained by substituting Equation (1.4)
into the right side of Equation (2.29), that is

Hy Mo

3y tikzZg Hy =0 x <0,y =0, |z]|<e . (2.31)
To obtain the boundary conditions for the region {x > 0, y = 0, |z|<=}
one can follow the same procedure as above, but there is a simpler way
of obtaining them by using the results already derived above.

If the half-plane described by {x > 0, y = 0, |Z|<= } is a perfect
electric conductor, which is the limiting case of Zg approaching zero,

it follows from Equations (2.30) and (2.31) that

3Ey

3y =0 , X>0,y=0, |z|<= (2.32)
and

Hy =0 , x>0,y=0, |z|co ., (2.33)

On the other hand, if the half-plane described by {x > 0, y = 0, |Z|<w}
is a perfect magnetic conductor, which is the limiting case of Zg » =,

one obtains from Equation (2.30) and (2.31) the following expressions:

Ey =0 , x>0,y=0, |z|<= (2.34)

and
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3H
a—y‘!'=0 s, X>0,y=0, |zj<» .,

Thus, the decoupling of the boundary conditions has been

(2.35)

accomplished, It is straightforward to decouple the Helmholtz vector

equation, This is done by rewriting equations (2.15) and (2.16) in

rectangular coordinates such that

2-k2 : [:32 32 % z:l
(V +k ) By = |t yf vtk _|Ey=0,
y > 0, |x] and |z|<e
2 2 2
(Vz*kz)H =r-a—-r+a—r a—ﬂ-.n.l,z—lu n

Yy T Loaxs Tyt Far R gy =Y o

y » 0, |x| and |z|<= .

This shows that Ey and'Hy satisfy Helmholtz scalar equation and

completes the scalarization of the original vector problem

a . b BCI Ve w w v w

> - > -
(2) Choose the vector potentials A =y Ay and Fy =y Fy to

. decouple the Leontovich houndary condition,

(2.36)
(2 271\
\Ledi/ )

It follows from [20], and the Lorentz condition for the potentials,

> >
that the fields E and H can be expressed in terms of Ay and Fy as

follows:
4 X(yFy) + ik EA W (yAy))
= - VX(yFy) + ikng | yAy + V(7e(y
k
and
»>
H =

. VX(_;Ay) + kY, [;:—'y + v(v-(§Fy))]
k2
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where Ay and Fy satisfy the Helmholtz scalar equation, that is

2,2 . L 32 a2 2 2 i .
(v + )y- axz+ay4+azz+k Ay—O, (2.40)

y >0, |x] and |z|<e

2 2
(v +k) Fy T + k Fy =0, (2.41)

y >0, |x| and |z|<= .

Thus, the differential equation has been already decoupled, and the next
step is to decouple the boundary condition given by Equation (2.19).
First, replacing Ex, Ez’ HX and H, in Equations (2.19)-(2.23) by

the expressions given in Equations (2,38) and (2.39), one obtains

, ‘ A ‘ , ‘ Z, oF '
az | ZsAy ¥ ik, ay l = T oax I Fy * ikn 3y ' ’ (2.42)
Xx <0,y =0, [z|<
and
. 1 A . Zg oF,
x| LAy Y, 3y =2 | fyt ikn 3 , (2.43)

x <0,y=0, |Z] <

for the impedance wall. Likewise, one obtains

3 1 8 (N e 13')'
3z [Fy] = kY, ax | ay Y [Fy] = - ikyY oz } ay | o (2.44)
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for a perfect electric conductor, and

3 1 a3 | %Fy 3 1 3 |3

3z [Ay] = - ikno X 3y S ax [Ay] N ikno 3z Sy'Fy » (2.45)

x>0,y =0, |z]<o
for a perfect magnetic conductor.
Next, one arbitrarily assumes that the fo]lowing two equations are

satisfied by Ay and F_; namely,

y’
1 3y
Zg Ay + kY, 3y =0 » X <0, y=0, |z|<= (2.46)
and
Zg oF
Fy + 7kmg syl'= 0 » X <0, y=0, |z]<= . (2.47)

Using the Expressions (2.46) and (2.47) in Equations (2.42) and
(2.43), it is easy to see that both Fquations (2.42) and (2.43) are
simultaneously satisfied., It follows that the original assumptions

(2.46) and (2.47) are indeed correct. Rewriting (2.46) and (2.47), one

gets for the impedance wall,

z
d S
3; + ik ;; Ay =0 . X <0,y =0, |z|<o (2.48)
._a -
o 9 - -
” + ik Zs Fy =0 . x <0,y =0, |z|< (2.49)

which are the decoupled Leontovich boundary conditions for Ay and Fy.
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Now, assume the following two equations are true for the perfect
electric conductor:

A
) y

F. =0, — =0

3y , x>0,y =0, |z]<> .  (2,50)

Substituting (2.,50) into (2.44) one verifies that both expressions in
Equation (2.44) are simultaneously satisfied. Therefore, the original
assumption given by Equation (2.50) is correct.

Finally, assume that the following is true for the perfect magnetic

conductor:

aFy
Ay=0; 3y =0 . x>0,y =0, |z]<e , (2.51)

oF
Again, substituting for Ay and 3yz'1n Equation (2.45) by the expressions
given in Equation (2.51), one concludes that both expressions in
Equation (2.45) are simultaneously satisfied, It follows that the
expressions in Equation (2.51) are also true.
Thus, by choosing the normal vector potentials Ay and Fy, one can

also scalarize the original vector problem,

C. SCALARIZATION OF THE 2-D VECTOR PROBLEM (NORMAL INCIDENCE)

As in the more general case of oblique incidence, the vector
problem for the special case of normal incidence can also be scalarized
in two ways:

(1) Choose the tangential field components (E; and H;) to decouple

the Leontovich boundary conditions.
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Following a procedure similar to that in Part (1) of Section B, it

can be shown that the Leontovich boundary condition can be decoupled as

follows:
3 T
;; + ik 2;‘ EZ =0 . x <0, y=0 (2.52)
3 ZS
3y + ik ;;' Hz =0 , x <0, y=0 . (2.53)

Also, for the case of the perfectly conducting electric wall, the

boundary conditions satisfied by E, and H; are

E. = 0; — =0 R x>0,y=0 (2.54)

and the boundary conditions for the perfectly conducting magnetic wall

are

3,

y - 0; H =0 s x>0,y=0

. (2.55)

Next, rewriting Equations (2.15) and (2.16) in rectangular

coordinates, one obtains

2 2 EAE

(vt +k ) E,=0=|352" %2 +k _ E, =0, |x|<=, y > 0 (2.56)
2 2 2 @2 2~

(Vt +k)H, =0= Tt 3;5 + k__ H, =0, |x|<= , y > 0 (2.57)

which completes the process of scalarizing the original vector problem.
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(2) Choose the tangential vector potentials (A,, F;) to decouple
the Leontovich boundary condition.

Again, one can follow a similar procedure as in Part (2) of Section
B to show that the following is true. The tangential vector potentials
A, and F, satisfy the following decoupled boundary conditions on the

impedance wall:

» o
» + ik Zs AZ =0 , X<0,y=0 (2.58)
9 ) ZS
%y + ik n FZ =0 . x<0,y=0 . (2.59)

On the region {x > 0, y = 0}, AZ and Fz satisfy the boundary conditions

given by
aFz
;;‘ =0 ; AZ =0 , x>0,y=0 (2.60)
for a perfect electric conductor, and
A,
F,=0 ; 3y =0 , x>0,y=0 (2.61)

for a perfect magnetic conductor,
As in Part (2) of Section B, it follows from [20] and the Lorentz

condition that Az and FZ satisfy the Helmholtz scalar equation, that is

2 2 T2 32 2
(Vt + k) Az(x,y) = _5;2 + S;Z f k _ Az(x,y) =0 (2.62)

and

d ) 2—‘
Sttt k| F(xy) =

2 2 2 2
(v, + k) F(x,y)

\
o

. (2.63)
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In conclusion, for the general case of oblique incidence on the
edge, the normal field components (Ey, Hy) or the normal vecfor
potentials (Ay, Fy) will scalarize the vector problem. On the other
hand, for the special case of normal incidence on the edge , the
tangential field components (Ez, Hz) or the tangential vector potentials
(AZ, Fz) will scalarize the original vector problem.. Thus, essentially
what has been done is to transform the vector problem to two scalar
ones, | |

This study will only consider the case when ZS is a constant and
scalar, corresponding to a homogeneous, isotropic impedance sheet. For
the more general case when ZS is a tensor and is a function of position,
it is much more difficult and usually not possible to scalarize the
Leontovich boundary conditions. 1In [1], Senior studies the case when

Zs is a tensor, but not a function of position, corresponding to a

homogeneous, anisotropic impedance sheet,

D. METHODS OF SOLUTION
1, Maliuzhinets' Method

As mentioned in [1], there are two basic methods of solution of
the canonical problem presented in Sections B and C. The first method
is that of Maliuzhinets [24] and is the more general of the two, because
it is applicable to wedge-shaped regions as well, The total field is
expressed in cylindrical coordinates in the form of a Sommerfeld
integral with an unknown weight function in the integrand which is
deduced via the use of boundary conditions and complicated function
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theoretic manipu1ations. For more details, refer to [24] where only the
case of normal incidence is considered.

Different high-frequency approximations of the exact solution
obtained by Maliuzhinets [24] in 1959 have been derived in [25] through
[30] for various geometries which are special cases of the wedge.
Recently, the high frequency solution of Maliuzhinets [24] has been made
uniformly valid across the shadow boundaries and it has been cast into
the UTD form [31] which is useful for further generalization of this
solution. The solution presented in [31] is thus expressed in terms of a
UTD diffraction coefficient which has the same general structure as that

for the perfectly conducting wedge [11].

2. Wiener-Hopf Method

The second method which will be used in this study is the
Wiener-Hopf method, When the fields and currents are expressed in
cartesian (rectangular) coordinates, the canonical problem presented in
Sections B and C becomes a planar two-part boundary value problem which
can be solved by the Wiener-Hopf technique. It can not be solved by the
more common method of separation of variables because the boundary
conditions are different in the two semi-infinite regions
{x <0, y=0, |z|<=} and {x > 0, y = 0, |z|<=},

As indicated by Noble [32], there are three basic ways of arriving
at the Wiener-Hopf equation which must then be solved via the

Wiener-Hopf procedure.
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(i) Jones' Method

This method due to D.S. Jones [33] obtains the Wiener-Hopf equation
by simply applying Fourier transforms directly to the partial
differential equation and boundary conditions. One minor disadvantage
of this method is that sometimes in very complicated problems it may not
be immediately obvious that the transform equations can be reduced to
the Wiener-Hopf equation. Jones' method will be used in Chapters III

and IV to derive the Wiener-Hopf equation.

(ii) Integral Equation Method

In this method, the integral equation is usually obtained by the
Green's function technique. A typical integral equation has the

following form:
J 0(x) g(z-x)dx = q(z) , 0<z<cw (2.64)
)

where g(z-x) and q(z) are known functions, and 0(x) is the unknown
function, The function g(z-x) is usually referred to as the kernel of
the integral equation and is generally related to a Green's function
used in the formulation of the integral equation.

In many cases, it is not obvious which Green's function should be
chosen, and the Fourier transforms of the kernels (Green's functions)
introduced by this method may not be easy to obtain. This is completely

avoided in Jones' method. The main advantage of the integral equation
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method seems to be that it is very easy to recognize problems that can
be solved by the Wiener-Hopf technique, because the integral equation in
(2.64) has a semi-infinite range. For more details refer to [32] and
[347 where a more complete treatment of this method is done. This
method will not be used in this study. In [35], Senior obtains the
solution for the diffraction by an impedance half-plane by solving
coupled Wiener-Hopf integral equations for the Fourier transforms of the

electric and magnetic currents,

(ii1) Dual Integral Method

The main characteristic of this method is that the partial
differential equation is solved in the transform domain, but unlike
Jones' method, the solution is inverted to the space-domain where the
boundary conditions are applied. This gives rise to a pair of coupled
integral equations. Edge conditions do not appear explicitly in this
method, but they are assumed implicitly, because one assumes that
certain orders of integration can be interchanged and certain integrals
are convergent, After the solution has been completed, one can check if
these assumptions were valid or not. Questions of rigor and uniqueness

are not as obviously addressed here as in the first two methods.

3. Solution of the Wiener-Hopf Equation

In this section, a brief outline of the formal procedure for

solving the Wiener-Hopf equation will be given, A more detailed
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discussion is available in Noble [32], and in Mittra and Lee [34].

A typical Wiener-Hopf equation is given by

Fo(x) 6(s) = K(s) - C_(s) T, (2.65)

where E+(s) and 6_(5) are unknown functions; whereas, K(s) and G(s) are
known functions, Note that there are two unknown functions and only one
equation. Furthermore, Equation (2.65) holds only in the strip defined
by t_ < 1« 7, of the complex s-plane., With the Wiener-Hopf procedure
one can accomplish the apparently impossible task of solving for two
unknown functions from only one equation. However, there is one more
piece of information that is crucial for solving Equation (2.65), As
the notation in (2.65) implies, f+(s) is regular in the upper half-plane
described by t > t_, while 6_(5) is regular in the lower half s-plane

Tt < 1,. Furthermore, G(s) and K(s) are regular in the strip defined by
<t T, .

The fundamental step in the Wiener-Hopf procedure is the

factorization of the function G(s) into the product of two functions

such that

6(s) = G,(s) G_(s) (2.66)

where G, (s) is regular in the upper half s-plane defined by t > T_ and

G_(s) is regular in the lower half s-plane defined by T < t For

+.
reasons that will become obvious, it is required that G,(s) and G_(s) be
free of zeros in the respective half-planes where each function is
regular. This is possible only if G(s) is free of zeros in the strip

T_ <t < 1 [34],
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There is a formal procedure for factorizing G(s) which is discussed
in Appendix D. Sometimes G_(s) and G_(s) can be found by inspection
when G(s) is a simple function., Substituting (2.66) into (2.65) and

dividing by G_(s) gives

o

- K(s) _(s)
F+(S) G+(S) = G (S) - (S) s T_ < tTX< T, . (2.67)

ep)

Note that it is possible to divide by G_(s) because it was assumed G_(s)

is nonzero in the half-plane © < t The function F+(s)G+(s) is

+.

analytic in the upper half s-plane t > t__ while the function

6_(5)/6_(5) is analytic in the lower half s-plane © < 7 However,

+
K(s)/G_(s) can have singularities in both half planes.

The second most important step in the Wiener-Hopf procedure is to
decompose the function K(s)/G_(s) into the sum of two functions such
that

K(s)
G (s) - Pi(s) +D_(s) (2.68)

where D (s) is regular in the upper half s-plane t > t_, and D_(s) fis

regular in the lower half s-plane tv < t As in the case of

+o
factorization, there is a formal procedure for the decomposition of a
function which is discussed in Appendix E. In this study, the function
K(s)/G_(s) will be simple enough such that it can be decomposed by
inspection as shown in Chapter III. Substituting (2.68) into (2.67) and

rearranging terms yields

, T <1t<T . (2.69)




Figure 2.7 shows the regions of regularity of all the functions involved
in Equations (2.65) and (2,69). .

By a careful examination of Equation (2.69) one concludes that the
function on the right-hand side of (2.69) is analytic in the lower
s-plane t < T,» and the function on the left-hand side of (2.69) is
analytic in the upper half s-plane defined by t > t_, Since both half
planes have a common overlapping region described by t_ < t < T, it
follows by analytic continuation [32] that both sides are equal to an

entire function J(s) (regular in the whole s-plane) such that

(2]

)
J(s) = F (s) G (s) - D.(s) =D_(s) - G'Ez) for all s (2.70)

where Equation (2.70) holds over the entire s-plane.

Now suppose it can be shown that

iE+(s) G, (s) - D.(s)] < |s|p as s +» for T> 1 (2.71)

-and

C_(s)

| D (s) - E:TZY | <|s|9 ass+e for t<1 (2.72)

+ L
Then, by the extended form of Liouville's theorem [32], J(s) is a
polynomial P(s) of a degree less than or equal to the integral part of

min(p,q) = n such that

2 4
P(s) = 3, + as + 85 + .00 tas =) as (2,73)

where the constants a; are unknown,
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Figure 2.7. Regions of regularity of all the functions involved in
Equations (2.65) and (2.69).

44




Solving for the two unknown functions F_(s) and C_(s) one gets

X P(s) + D, (s)
F+(S) = G+(S) (2.74)

and

C_(s) = [D_(s) - P(s)] G_(s) . (2.75)
It follows from (2.73), (2.74) and (2.75) that F,(s) and C_(s) are
determined to within a finite number of arbitrary constants which must
be determined otherwise.

The assumption that J(s) is a polynomial is true when one is
dealing with electromagnetic problems, because the functions involved in
Equations (2.71) and (2.72) are restricted to have algebraic growth.
This is due to the edge conditions that the fields have to satisfy near
geometrical singularities. The edge conditions are discussed in
Appendix B. In most problems in electromagnetics, P(s) will be zero in
which case E+(s) and E_(s) will be uniquely determined. Sometimes P(s)
.may be a nonzero constant which still has to be determined. Chapter IV

shows how this can be accomplished.

45




CHAPTER III

IMPEDANCE BISECTION PROBLEM (NORMAL INCIDENCE CASE)

A. STATEMENT OF THE PROBLEM

This chapter deals with the analysis of the problem of diffraction
by the two-part impedance geometry depicted in Figure 3.1. An
infinitely thin screen which is either a perfect electric conductor
(PEC) or a perfect magnetic conductor (PMC) lies on the half-plane
{x>0, y = 0}. It is joined to another half-plane {x < 0, y = 0} which
consists of a homogeneous, isotropic impedance wall characterized by the
impedance ZS which is a constant, Note that the PEC screen can be
characterized by a zero impedance, while the PMC screen is equivalent to
an infinite impedance screen. A plane wave u1 is incident from
free-space at an angle ¢' to the x-axis (0 < ¢' < w). The incident wave
may be of the transverse magnetic (TMZ, ui = E;) or transverse electric
(TEZ, ui = H;) type field relative to the z-axis, Note that there is no
variation of the incident field and the geometry in the z-direction,
hence it is a two-dimensional problem. The total field will be

determined everywhere in the half-space y > 0.
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WALL
Figure 3.1. Impedance bisection geometry for plane wave excitation.

As shown in Section C of Chapter II, this problem can be scalarized
by dealing with either the tangential field components (Ez, Hz) or the
2-directed potentials (A=;Az, F=;Fz). The tangential field components
will be used here. It follows that the boundary conditions for both TEz

~and TMz polarizations are (see Section C, Chapter II) given by

TEz case: Ez =0

4 IsT o
ay + ik " | Hy=0 » y=0, x<0 (3.1)
d
E;‘Hz =0 forPEC , y=0 , x>0 (3.2)
or
H, =0 for PMC , y=0 , x>0 . (3.3)
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—d . No —
ay + ik Zs Ez =0 s, y=0 , x<0 (3.4)
E, =0 for PEC , y=0 s x>0 (3.5)
or
4
dy E, = 0 forPMC , y=0 , x>0 (3.6)

1/2
where n, = (uo/eo) is the free space impedance.

Instead of solving four different problems (two polarizations and
PEC or PMC screen), only two problems will be solved: even and odd

problems, For both cases, the function u(x,y) is equal to

|"E, for TM, polarization, or

u(x,y) = 3.7
(xay) H, for TE, polarization (3.7)

and it satisfies the scalar Helmholtz equation

2 4 2 o2 2,
(72, + K2) ulx,y) = (52 + 57 + k2] ulx,y) =0 fory >0 (3,8)
and |x|<e ,

For the even problem, u(x,y) = ua(x,y), and the boundary conditions

become

4 .
dy + 1k6e

1l
o

ug (x,y) »  x<0,y-= (3.9)

and
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) _
dy ug{x,y) =0 , x>0,y=0 (3.10)

where

1

l s/"o = normalized impedance, TEz polarization
S = . 3,11
€ no/ZS = normalized admittance, TMz polarization ( )

For the odd problem, u(x,y) = ug(x,y), and the boundary conditions are

given by
- -
| 9.
| oy * ks | uy(x,y) =0 , x<0,y=0 (3.12)
I_ |
and
uy(x,y) =0 } » x>0,y=0 (3.13)

where 8, has the same definition as 8e. The subscript "e" refers to the
even problem while the subscript "o" refers to the odd problem. Let the
incident field be denoted by
o
ul(x,y) = v o k) , ¥y>0 (3.14)
where

ky = - keose' 5k, = ksing® (3.15)

and v is an arbitrary constant. In cylindrical coordinates, ui(x,y) is

equal to -

ul(p,9) = v e Tkeeos(e=0') g 0c (g < . (3.16)
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The first step in solving this problem is to consider the geometry
shown in Figure 3.2 where a homogeneous, isotropic impedance wall
occupies the plane y = 0. The reason for doing this will become obvious
in the following steps of the analysis,

The field J(p,¢) will be referred to as the unperturbed total field
in the presence of the impedance wall. This problem can be solved by
the well known separation of variables technique [36], because the
boundary conditions given in Equations (3.9) and (3.12) hold for all

values of x such that

I I e
‘ - + ik s l u(x,y) =0 for |x|<e, y =0 (3.17)

where the subscripts "e" and "o" will be temporarily dropped for

convenience,

;

(‘o ’ F-o)

B G
T 77 Y 0272777 777777777) —-’X

Figure 3.2, Unperturbed geometry,
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Without going over the details of the solution, the final result can be

written as

T(x,y) = u'(x,y) + 0" (x,y) (3.18)
where ﬁf(x,y) is the reflected field given by

i(k x+kly)
WT(x,y) = WR(8,0") e X Y s Ixl<e, y >0 (3.19)

and R(8,¢') is the Fresnel reflection coefficient.

J

R(S,¢') =75
ky + k6

N
(=]
~—r

sing' + 8 : (3.

bNote that the unperturbed field u(x,y) still satisfies Equation (3.8)
(or the scalar, two-dimensional Helmholtz eduation).

As stated in Section D of Chapter II, there are two basic methods
for solving the canonical two part;impedance problem being considered in
this chapter. In this analysis, the Wiener-Hopf method will be used,

and the Wiener-Hopf equation will be obtained by Jones' method in

Section B.
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B. JONES' METHOD

In order to have some order in the analysis, the even problem is

solved first, and then the odd problem will be considered.

1. Even Problem

The total even field ug(x,y) can be written as

o~ S
ug(x,y) = u (x,y) +ui(x,y) fory >0, | x| <o (3.21)

where ﬁé(x,y) is the even unperturbed field which was defined in
Section A,

The field uZ(x,y) which is referred to as the scattered field is
necessary to properly account for the effects of the PEC or PMC screen
lying in the half-plane {x > 0, y = 0}. Note that the definition of the
scattered field u:(x,y) is different from the usual definition of
scattered field.

Since the total field ue(x,y), and the unperturbed field Ge(x,y)
satisfy the scalar Helmholtz equation, it follows that u:(x,y) also
satisfies the same equation, that is

T2 22 7|
l w2 gz t K ugxy) =0 for x|<=, y >0 . (3.22)

Furthermore, it follows from Equations (3.9), (3.17) and (3.21) that

3 s
| |
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Thus, the field u:(x,y) also satisfies the Leontovich boundary condition
for {y = 0, x < 0}. For the half-plane {x > 0, y = 0}, the boundary

condition given in Equation (3.10) becomes

:_y ug(x:y) = - Z—y U (x,y) = - :—y [u' (x,y) + Gg(x,y)] (3.24)

fory =0, x>0
Following the notation of Appendix A, let
s _ .S s
ua(x,y) = ug (x,y) + ug_(x,y) (3.25)

where u:+(x,y) and u:_(x,y) are the half-range functions defined in

Appendix A, Also, let

i+r(

2 ~F _ . i+r i+r
g (X,y) = u(x,y) +ug(x,y) =u " O6Gy) +u " (xy) o (3.26)

It follows that Equations (3.23) and (3.24) can be rewritten as follows:

9 .
2y + 1k5e

us_(x,y) = 0 for y = 0, |x|<e= (3.27)

- and

3 s 3 i+r -
ay Ue+(y) = - 37 (Ugy (x,y))  fory =0, [x|<e (3.28)
As stated in Section D of Chapter II, the principal feature of
Jones' method is that the Fourier transform is applied directly to the

differential equation and the boundary conditions. Note that the
Fourier transform being used here is carefully defined in Appendix A,

and it will not be repeated in this chapter. Applying one-sided Fourier
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transforms to Equations (3.27) and (3.28) with respect to the variable

X, one gets

PVRELIA i GZ_(s,y) =0 for y Im(s) < = (3.29)

n
(e ]
-
A
L]

ay +

and

A

3~ 8 e
ay Ues(ss¥) = - 5y (ugy (s,y)) fory

0, t=Im(s) > t_ (3.30)
where s is the complex variable in the Fourier transform domain and the
constants 1 and t_, which are defined in Appendix A, will be determined
later in the analysis. Next, Fourier transforming Equation (3.22) and
using Equation (A.16), one obtains that

_32 -
‘ —Z + g2

A

uZ(s,y) =0 fory >0, 1_<t1<T (3.31)

y +

where uZ(s,y) is regular in the strip 1_< < 7, and B, which is

carefully defined in Appendix C, is given by

1/72

8= (k2 - s?) ) (3.32)

Since (3.31) is a second order differential eduations, it has two

solutions, that is

-~

U:(S,Y) = Ae(S)ew'y + Be(s)e'”s'y fory »0, T_< 1<t . (3.33)
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Let
B =8 +iB | (3.34)

where Br and B; are real variables. In Appendix C, the branch cut of 8
is defined such that BI > 0 in the entire top (proper) Riemann sheet of
the complex s-plane. It is obvious that the second solution of (3.33)

will become unbounded as y + =. It follows from the radiation condition

given in Appendix B that

Bo(s) = 0 (3.35)

and u:(s,y) becomes

us(s,y) = Ag(s)e' ™ fory >0, T <T<T, (3.36)
where A (s) is still unknown at this point. The function ue(x,y) can be
rewritten in terms of one-sided Fourier transforms as

s - igy _ ’s S

Ug(s,y) = Aj(s)e Ugy(Ssy) +ug_(s,y) (3.37)

fory >0, 1. < 1< T,

where u:+(s,y) is regular in the upper half s-plane defined by © > t_
and u:_(s,y) is regular in the lower half s-plane defined by t < 7.

Letting y = 0 in Equation (3.37), one gets

= uS °S
Ae(s) = ue+(s,0) + ue_(s,O) . T <CTCT

s (3.38)

which indicates that Ae(s) is also regular in the strip defined by

T < T < T,
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Following a similar procedure as above, the one-sided Fourier
transfom of u;ir(x,y) will be computed next. Substituting u;:r into

(A.7) yields

~i+r

1 © Ly .
oy (S5¥) = 75 f u;+r(x,y) e SXdx fory > 0 (3.39)
‘ 0
or
~j+ v | ikyy L TkyT
Ugy (55¥) = = le V4R (8,80 ¥
- - (3.40)
a i(s+k_)x
«Lim [ e X7 dx fory >0 ,
a > ®® 0O
but
] ]
a i(s+k_)x —i(s+k )a -
Lim fe  “ dx=Lim [e % 1 i
a»e=o0 2> | q(sw) o iswy |- (34D

If Im(s+kx) Im(o + i1 - (k1 + ikz) cos¢') = r-kzcos¢' is greater than

zero, one finds that

, i(s+k_)a
Lim e X
a+ ‘;7;:;17— =0 for > k2 cos¢’ (3.42)
and
— -k' - '
~i4r v -1kyy Tkyy™t i
Ugy (S5¥) == | e + Re(se,§')e oy (3.43)

for > k2 cos¢'
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It follows that

T = k2 cos¢' (3.44)

and J;Ir(s,y) is a regular function in the upper s-plane defined by

T> T,

Taking the derivative of U;Ir(s,y) with respect to y, one gets

. ] kl
1kyy— y

S+kl .
X

]

v
ay e+ (s.y) =737 | e

- Ree (3.45)

Evaluating (3.45) at y = 0 and substituting into Equation (3.30), one

obtains that

3 v k;
2 ’s = o —=— =

If the following notation is used:

a ~

3 *s _ 3 s
y =0
Equation (3.46) becomes
kl
s . 4 3.48
ay Ye+(5:0) =T o4 kD) (1-R,) for 1> 1 . (3.48)
. ) ag

It is obvious from Equation (3.48) that 3; ue+(s,0) is also regular in

the upper s-plane © > t_
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As stated above, the scattered field u:(x,y) is needed to account for

the effects of the PEC or PMC screen lying on the the half-plane {x > O,

y = 0}. This means that u:+(x,0) has to have the same asymptotic

behavior as ue1+r(x,0) for x + », that is
k,cos ¢!
Lim UZ+(X’O) ~ce? b'x =c et . (3.49)

X >+oo

It follows from Equations (A.4) and (A.7) that Ge+(s,0) is regular in

the upper s-plane defined by © > t_,

The next step in the analysis is to take the derivative of Equation

(3.37) with respect to y, and after setting y = 0, one finds that

. 3 ag 353-(5,0)
18A(5) = 3y US(5,0) + ——— , T <t<r . (3.50)
Substituting Equations (3.29), (3.38) and (3.48) into (3.50), one
obtains
_ _ k' (1-R
ig 0 (s,0) + 0l (s,0) | = > Y( E) ik$ a3 (s,0)
'y . - = ' - - ] ]
e+ e- /on (s+kx) ee (3.51)
T_<T<T,
or
k'(1-R
-V y( e) . ~S ~g . .
/Zn (sk')  C iBug,(s,0) +ug_(s,0) (i8 + iks,) , (3.52)
X

T_ <t .

At this point in the analysis, the regions of regularity of

“s 3 ~s
ue+(s,0) and u

3y o+(5,0) have been established, Furthermore, from the
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definition of B in Appendix C, it is easily determined that B8 is regular
in the strip defined by -k2 < 1< k2' Thus, it remains to defermine the
regions of regularity of Gz_(s,O) which can be established by knowing
the asymptotic behavior of u:_(x,O) as x+-», Note that besides the
contribution to u:(x,y) from the currents lying on the PEC or PMC
screen, there will be a contribution from the region {x = 0, y = 0}
where the impedance discontinuity occurs [6,10]. This contribution can
be interpreted as coming from an equivalent source [6,10] located at

{x =0, y =0}. It follows from Equation (B.4) that the asymptotic

behavior of u:_(x,O) due to this contribution will be

-ikx Ce-1k1x ekzx

T - 3.53
(172 o 3/2) = (172 op 3/2) as x » == .  (3.53)
x| x|

- s
ue_(x,O) ~

Therefore, T, is equal to
T, = Im (k) = k2 (3.54)

and uZ_(s,O) is regular in the lower half s-plane defined by t < T,.

Dividing (3.52) by i8, one gets

vi ky (I‘Re) ~g _kse+3_ ~g
V7% (stk')g - ue+(s,0) + 3 ue_(s,O) , (3.55)
x -

T_<T<T+ o

Since t, > 1_, all the functions of Equation (3.55) have a common
overlapping region of regularity. In a well-posed physical problem,
this is always the case [34]. Let Ge(s) and @e(s) be defined as

follows:
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B8

G8(s) = (3.56)
(s kse+8

. ivky(l-Re)

8 (s) = 7355(;;§;7 (3.57)

where Ge(s) is regular in the strip -k2< T < k2 which includes the strip
T_ < T <1, and ¢e(s) is regular in the strip t_ < t < T,. Substituting
(3.56) and (3.57) into Equation (3.55), and multiplying by GS(s), one

obtains

o (3.58)

0%(s) G(s) = U3_(s,0) + 6°(s) ug,(s,0) , T_<tT<r,

which is known as the Wiener-Hopf equation. Figure (3.3) shows the
regions of regularity of all the functions in Equation (3.58). Note
that there are two unknown functions in (3.58); namely, G:+(s,0) and
GZ_(S,O). This equation can be solved using the Wiener-Hopf technique
which was invented around 1931 to solve a special type of integral

equation [32]. This technique was summarized in Section D.3 of

Chapter 1I. Comparing Equations (2.65) and (3.58) one concludes that

K(s) = 8%(s) G%(s) (3.59)
Fo(s) = ud,(s,0) (3.60)
C_(s) = ud_(s,0) . (3.61)

It is required that Ge(s) be free of zeros in the strip 7_ <t <., It

is obvious that G%(s) in Equation (3.56) does not have zeros in the
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Ims
Kek, +ik
DI (s), % 1 7 e
o(s) Uid(s,0) 63(s)
A \ [
coumon resion | 02 (s,0) 62 (s)
OF
ANALYTICITY
\ k T, =k,
"4
7777777 KR ATV 77 ZH AT 7777 77
k cos¢’ T_=k cos ¢’
Res
X
u_ (s, 6t (s) Df (s)
R V-
ut(s.,0) | G°(s) 02 (s)

Figure 3,3, Regions of analyticity of functions in Equations (3.58)
and (3.131),
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strip t_ < < t,. The factorization of G%(s) is possible if GE(s)
satisfies certain conditions [32], which are satisfied by this
particular G8(s). The functions Gi(s) and Gf(s) are obtained by
following the same procedure as Weinstein [37] and the details are shown
in Appendix D.

As mentioned in Section D.3, Chapter II, the functions Di(s) and

Df(s) in this particular problem can be obtained by inspection. Recall

that
K(s) e e e e
o =8 (s) G (s) = Di(s) +D(s) , T <7T< T, . (3.62)
G_(s)
It is shown in Appendix E that Di and Df(s) are given, respectiveiy, by
DS (s) e €(s) (3.63)
Ss) = i T - S
+ + .
/2n ksy(s+k,) | 6E(=k,) ~
and
_\s) = 1 - 1 . (3.64)
/2n kéy(stk ) | G(s) Gﬁ(-kx)

Substituting (3.62) into (3.58) and using the results of (2.70) yields

1
e

05(s) - uS,(5,0) 65(s) = uS_(s,0) - 08(s) = P(s) (3.65)

(s)
for all s

where P(s) is still an unknown entire function which can be expressed as
a polynomial in s.
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Solving for ae+(s,0) and ae_(s,O) in terms of P(s), one obtains

D(s) - P(s)

~S
Ug4(s,0)

(3.66)
G (s)

and

s
Ug_(s,0)

65(s) [P(s) + 0%(s)] . | (3.67)

Since P(s) is an unknown, GZ+(s,0) and G:_(S,O) are not unique
solutions, In other words, it is possible to obtain many solutions
which satisfy the scalar Helmholtz equation and all the boundary
conditions. In order to obtain a unique solution, the asymptotic
behavior of both sides of Equation (3.65) has to be determined for the

specific problem at hand.

It follows from Equation (3.56) that

GE(s) ~ 1 as Is| » = for v <1<, . (3.68)

It is shown in Appendix D that

Gi(s) ~las |s| »»  fort>t (3.69)
and

68(s) ~las |s| »=  fort<rm, . (3.70)

The asymptotic behavior of Dﬁ(s) and Df(s) is easily determined from

Equations (3.63) and (3.64), that is

De(s) ~ s-1 as |s| + = for t> 7 (3.71)
+ -
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and

S-l

Df(s) ~ as |s| + = for T < 7 . (3.72)

+

In order to determine the asymptotic behavior of G:_(S,O) and G:+(s,0),
the edge conditions given in Appendix B have to be used. Recall that

ue(x,y) represents the tangential electric field component EZ or the

tangential magnetic component Hz‘ It follows from Equation (B.5) that

u2+(x,0) = 0(|x|p) as x + 0+ (3.73)

and
S p
ue_(x,O) ~0(|x|") as x » O- (3.74)

where p > 0. Therefore, using Equations (A.12) through (A.15) yields

) ~ 7P

Ug4(s,0 as |s| » = for > 1_ (3.75)

Ge_(s,O) ~ 5Pl as |s| » = for t< T, . (3.76)

Substituting Equations (3.69) through (3.72), (3.75) and (3.76) into
(3.65), one gets

10%(s) - a5,(5,0) 6&(s)| ~ [s|P7! as |s| » = for T> < (3.77)

IGZ-(s,o) 768(s) - 08(s)| ~ [s| P as |s| » = for 1<, . (3.78)

Although the constant p is unknown, it is at least known that p > 0.

Thus, it follows from (3.77) and (3.78) that
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P(s) +0 as |s| » = . ' (3.79)

Finally, by an application of Liouville's theorem [32] which states that

a bounded entire function is a constant; i.e.,
P(s) = 0 for all s . (3.80)

Thus, by applying the edge conditions, unique so]utidns have been
obtained., However, as shown in Chapter IV, this is not always true,
Sometimes additional information is needed in order to uniquely
determine the polynomial P(s).

Substituting (3.66) and (3.67) into (3.38) one obtains
-1 |
Ag(s) = DS(s) 65(s) + Go(s) D(s)  for all s. (3.81)

Since the functions Di(s) and Df(s) are given in (3.63) and (3.64),

respectively, Ae(s) can be rewritten as

ivk;(l-Re) 68 (s)

A = . - ,
e(s) /2r k§_(s+k_) (s) 6o (-k,) (3.82)
e X — X

1 1 |

+ -
6°(s) 6(=k,)  G(s)_

1 _
and solving for g in Equation (3,56) yields

-1 l . (3.83)
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Thefefore, Ae(s) is given by

ivk;(l—Re) Go(s)

A = ] 0 . 3.84
) " (s+k,) B 6S(-k ) (3-89

X

Substituting (3.84) into (3.37) leads to

vk (1-R,) 62(s)

Gz(s,y) = eisy for all s, and y > 0. (3.85)

/e (s+k;) B Gf(-k;)

The final step is to take the inverse Fourier transform of GZ(s,y)

to obtain u:(x,y). Using Equations (A.10) and (3.85) one gets

L era 1Yy (1RQ) 6(s)
UZ(X,N) =T J !

iBy =-isx
1 " e e d
Vo -otia /2n (s+kx) 8 G_(-kx)

S

(3.86)
for T_<ac<T

and y > 0, |x|<=

where the path of integration is shown in Figure (3.4). Note that the
integration path lies entirely in the proper (top) sheet of the

s-plane (Img>0) as required. When Im(k)+0, the medium becomes lossless,
and the new path of integration (a=0) is shown in Figure (3.5.).
Furthermore, notice that G:(x,y) has a pole s$ = -k; in the Tower

P

half-plane 1t < 1_ and a pole due to Gf(s) in the upper half-plane ©t_,
The contribution to the integral in (3.86) arising from these poles

is evaluated next.
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Ims k- COMPLEX

[}
/Im B=0 K -k' +ilt:
INTEGRATION
PATH aOR b
i \ ~~ ' AL >
-
ImpB =0 Res
-k
® 'e,o

PROPER RIEMANN SHEET:
ImB>0

Figure 3.4. Integration path in Equations (3.86) and (3.152) for k,* 0.

Ims

INTEGRATION

" PROPER RIEMANN SHEET :
ImB>0

Figure 3.5. Integration path in Equations (3.86) and (3.152) for
lossless case (k2=0).
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Assume that the medium is lossless, i.e., Im k=k2=0, and k=k1. It
follows from Equation (3.56) that the poles of GE(s) satisfy the

equation

2 2.1/2 Y .
g=(k -s) = -k§, = - kl(ser +1i8,¢) (3.87)

where k1 > 0, and it will be shown that Sop 2 0. Since ImB8 > 0 on the
proper (top) Riemann sheet, the poles of 6%(s) will lie on this top

Riemann sheet if

Otherwise, the poles of 6%(s) will lie on the improper (bottom)

later, the poles of Ge(s) will give rise to the surface wave fields if

they lie on the proper (top) Riemann sheet.

Solving for s in (3.87) and assuming (3.88) is true, one obtains

e 2 1/2

s_ = k(1-8,) (3.89)
e 2 172

Sy = ~k(1-8;) (3.90)

where s lies in the upper half s-plane t > ., and it is the pole of
G?(s). Similarly, si lies in the lower half s-plane t < t_ and it is

the pole of Gi(s). To show that the last two statements are true,

recall that

‘ E + iX for TEZ Polarization, or
- (3.91)
G

for TMZ Polarization
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Since {Es, ES} > 0 for a passive impedance sheet, and because it was
assumed that Im(se) <0, se will lie in the fourth quadrant of the

s-plane, such that

N[

i
5, = 18 0e'? , -7 <e<0 (3.92)
Squaring (3.92) yields
2 2 42
se = |6e| glct . -m<$ <0 (3.92)
and
2 2 1% R :
1 -6, = 11 - 8, | e . 0<¢<m . (3.93)
This,
2 1/2 2 172 14/2 _§ I. 3.95
(I-Ge) -|1-6e| e ,0<2<2 . (0)

2 1/2
It follows from (3.95) that (1-6e) always lies in the first quadrant
of the s-plane when Im(&e) < 0. Therefore, sf lies in the first

quadrant of the s-plane above the line t = 1, as shown in Figure 3.4.

+
The pole si lies in the third quadrant of the s-plane below the line
T = 1_and it is also depicted in Figure 3.4,

It is shown in Appendix D that in order to factorize Ge(s), it is

convenient to express Ge as

o = COS ge = cos(gﬁ + 15?) = C0S Eﬁ cosha? - isingﬁ sinhg? .

(=
"

(3.96)
0« Re(Ee) Ei

I
2

| <
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The restriction in the real part of £® is due to the fact that Re(&e)=

~

R
6er = {~s} is always greater than or equal to zero. Substituting

G

(3.96) into (3.89) and (3.90), sf and si can be written as

m
sf = ksin&e . 0 < Re (ge) <7 (3.97)
n
€ < ksing® ,  0<Re (£) <7 (3.98)
where
ey _ e A _
Note that if Im(Ge) > 0, then the poles of<a (s) will lie on the
improper (bottom) Riemann sheet such that
L
§® = —ksing® Im(e®) < 0, 0 < Re(%) <7 (3.100)
m
S = ksing® m(£%) < 0, 0 < Re(£°) <7 (3.101)
where gf is the pole of Gf(s) and EE is the pole of Gi(s) as depicted in

Figure 3.6.

2. 0dd Problem

For the odd problem, the unperturbed field is

- Hikox = -ik, ik y—
~ 1 r
Ug(x,y) = u (x,y) + u (x,y) = ve | y e Y+ R0(60,¢')e y s

3.102
y >0, |x|<e ( )
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Ims k =k, (REAL)
IMPROPER SHEET
ImB <0

/Imﬁ-o s=o +irv

Figure 3.6, Location of the poles §f’° and §$’° on the improper Riemann
sheet.,
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j
0

to the odd problem., The scattered field ug(x,y) still satisfies the

where v is a constant and the subscript "o" in u_, ug, Ry and 8, refers

scalar Helmholtz equation

T
+ ay2 R

s
2 ug(x,y) =0 , [x|<=> , y >0 (3.103)

and the following boundary conditions:

9
‘ oy ks, ' us(x,y) = 0 forx <0 , y=0 (3.104)

and
S i ~r
uo(x,y) = -u (x,y) - uo(x,y) for x>0 , y=0 . (3.105)

Using the half-range functions defined in Appendix A, (3.104) and

(3.105) can be rewritten as

s . | s |
| 2y * 1kéq_| uy_(x,y) =0 fory =0 , |x|<= (3.106)
Uf,+(x,y) = -u;Ir(x,y) fory =0 , |x|<= . (3.107)

Taking the Fourier transform of Equations (3.103), (3.106) and

(3.107) with respect to x, one obtains

| 2

|_ay2 * B _ UZ(S,Y) =0 fory>0 , 1_<t<T, (3.108)
2 Tl es |

| 3y *+ k8, | ug(s,y) =0 fory=0 , t<1 (3.109)
u(s)+(s,.y) = -u;Ir(s,y) for y = 0 , > T_ (3.110)
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where B has been defined in Equation (3.32) and the constants =

+ and t_

are unknown at this point. The most general solution of (3.108) is

S _ iBy -igy _ °s ~s
ug(s,y) = A(s)e ™ + B (s)e Ugi(Ssy) +u _(s,y)

(3.111)

fory >0 , T_ <t .

Since GZ(s,y) satisfies the radiation condition and Im(8) > 0 on the

proper Riemann sheet, e'1By is not bounded as y » =, It follows that
B,(s) =0 (3.112)
so that
aS _ ~ A _ iBy
u_(s,y) =u . (s,y) +u _(s,y) =A(s)e
0 o* 0 ° (3.113)
fory >0, t <1<
and
Ao(s) = uo+(s,0) + uo_(s,O) for T_<t< T, (3.114)

where Ao(s) is analytic in the strip defined by *_ < t < 1.
| Proceeding with the solution, the next step is to take the derivative

of (3.113) with respect to y and then set y = 0 to arrive at

9 - 3 -

iBAo(s) = §y'u2+(s,y) + gy'ug_(s,y) ,y=0, 1 <t<T ., (3.115)

Using (3.114) in (3.115) to eliminate Ao(s)
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. ~ - 3 - ] g
18| 05,(5,0) + U3 _(s,0) | = 3y u5,(s,y) + 35 u5_(s.y)

Now, substituting the boundary conditions given in equations (3.109) and

(3.110) into (3.116), one gets

. 1+r . ~g
iB (s,0) + u _(s,0) | = -iks_u> (s,0) + u (s 0) ,
- 0 0- (3.117)
T_<T< T,
or, rewriting (3.117)
-ig u1+r(s,0) = - i(B + k§&.) us (s,0) + u (s o) ,
0% 0- (3.118)
T_ < t < 'r+
where
'.l a A
0415:0) = 3y uS,(s,¥) : (3.119)
y=20
i+
In order to compute u;+r(s,0), it is enough to observe that u; r(x,y)
has exactly the same form as u;+r(x,y). Therefore, u;+r( ,y) can be
obtained from Equation (3.43); i.e.,
) ]
s v |T =ik y ik y"| i
j4r v y y I
Ugs (s,y) = 7o e + R, e 3 s+k)'( s T D> T (3.120)

where t_ has been defined in (3.44) and G;Ifs,y) is regular in the upper

half s-plane defined by t > 1_,
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Next, the functions G%(s) and 8%(s) are defined as follows:

6%(s) = 1 : (3.121)
B + kso *

and

i

+ ] .
S kx

a3 v
¢°(s) = Bug,"(s,0) = 8 7= (1 +R)

o (3.122)

Since B is regular in the strip -k2 <1< k2’ and as shown later, Go(s)

is free of poles in the same strip, it follows that Go(s) is a regular

o+
the upper half s-plane > t_, ¢°(s) is regular in the strip

function in the strip -k2 < 1< k2. Also, since G1+r(s,0) is regular in

T < 1< k9. Furthermore, Go(s) is free of zeros in the strip

-k2 <1< T, as required (Go(s) does not have any finite zeros in the

s-plane). Substituting (3.121) and (3.122) into (3.118) yields

°(s) 6(s) = U3 _(5,0) + 16°(s) U 3(s,0) , T < T (3.129)

which is the Wiener-Hopf equation. Note that 00(5) and Go(s) are known

A

functions, but there are two unknown functions; namely, us (s,0) and

o-
G;i(s,O). In order to determine the constant 7, it is necessary to
know the asymptotic behavior of u;_(x,O) and‘u;i(x,O) and use Equations
(A.12) through (A.15).

Re;a]] that ug(x,y) represents‘the electric field Ez’ or the
magnetic field Hz' It follows from Maxwell's Equations (1.1) - (1.4)
that u;S(x,y) is proportional to either Ex or Hx' Following the same
argument as in part 1, the asymptotic behavior of uz_(x,O) and u;i(x,O)

is
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-ikx -iky1x ekzx

> (x,0) 7 = as x *» (3.124)
u,_{x,v) ~ 172 372y = 172 372 =2 . .
0 |x|( or ) X|( or ) ,

and

' +ik _x -ik,cos¢'x k,cosd'x
uoi(x,O) ~Cye X = c, e 1 e 2 (3.125)
, asS X > +to

Since uZ_(x,O) has the same asymptotic behavior as u:_ (see Equation
(3.53)), 1, is given by (3.54).
As in the even problem, the next step is to factorize G°(s) into a

product of two functions such that
6%(s) = 6%(s) G3(s) (3.126)

where Gi(s) is regular in the upper half s-plane t > - Im(k) = -k, and
G?(s) in the lower half s-p]ane t < Im(k) = k2. It is shown in
Appendix D how one obtains Gg(s) and G?(s). Using (3.126) in (3.123)
and dividing by G?(s), which is possible since Gg(s) is free of zeros

in the lower s-plane Tt < T,, One gets

us_(s,0)
8°(s) G3(s) = TR 162(s) U, S(s,0) , T <T<T, . (3.127)

The left hand side of Equation (3.127) is similar to the left hand
side of Equation (3.58) in the even problem. Thus, ¢°(s) Gg(s) can be

decomposed into a sum of two functions such that
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8°(s) 69(s) = D2(s) + D2(s) - (3.128)

where Dg(s) is regular in the upper half s-plane T > t_ and D?(s) is
regular in the lower half s-plane t < T,o As in part 1, this
decomposition can be done by inspection., The details are given in

Appendix E and only the final expressions for Dg(s) and D?(s) are shown

here:
%s) MU o(s) (3.129)
Di(s) = 1 7 - k8 G, (s 3.129
* TR (s+k) | G2(k,) o+
— = X -
vi(l4R ) - -
D%(s) = o. 01 - 01 . . (3.130)
/Zn (s+k,) Gl(s)  G(-k,)
Substituting (3.129) and (3.130) into (3.127), one obtains
~s
. Al Uo_(S,O)
Dg(s) - 1G2(s) uoi(s,O) = -—;;;;;- - D?(s) , T_<T< T, (3.131)

where the regions of regularity in the s-plane of all the functions in
Equations (3.131) are depicted in Figure 3.3,

The right hand side of Equation (3.131) is regular in the Tower
half s-plane t < T,, and the left hand side is regular in the upper half
s-plane t > t_, so both sides have a common region of regularity. By
analytic continuation, both sides of Equation (3.131) are equal to an

entire function B(s) which is yet to be determined. Thus,
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us_(s,0)
GO

p2(s) - 162(s)d,3 (s,0) = - 0%(s) = B(s) ,

(s) (3.132)
for all s

As stated in Section D.3 of Chapter II, B(s) is a polynomial in s such

that

n
B(s) =a_+as+as2+,,,+as

3.133
ot \ n ( )

where the unknown coefficients {ai} can be determined by examining the

asymptotic behavior of the functions of Equation (3.132).
It follows from (3.121) that

Go(s) ~ s! as |s| + = for T_<T< T, (3.134)

and from the expressions of G?(s) and Gg(s) given in Appendix D, one

concludes that

o _1/2
G (s) ~s as |s| » = for T < T, (3.135)
and
_172
Gg(s) ~S as |s| » = for 1> T . (3.136)

The asymptotic behavior of Dg(s) and D?(s) is easily obtained from

(3.129) and (3.130), that is

=1
D2(s) ~ s as |s| » = for t> T (3.137)

and

P%(s) ~s as |s| + = for T< T . (3.138)
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In order to determine the asymptotic behavior of Gg_(s,O) anq G;i(s,O)
it is necessary to apply the edge conditions given in Appendix B.

Recall that ug(x,y) is either equal to Ez (perfect electric conductor
for x >0, y = 0) or HZ (perfect magnetic conductor for x > 0, y = 0),
Also, as stated before, it follows from Maxwell's equations that
u;s(x,y) is then proportional to either Hx or Ex‘ Using Equations (B.5)

and (B.6), one obtains

ug_(x,O) = 0(|x|p) as x + 0- (3.139)
3 s _'s _ p-1
3y Ugs(XsY) 0 U (x,0) = 0([x|""") as x » 0O+ (3.140)
y:

where

It follows that the asymptotic behavior of G;_ and Goi is:
G;_(S,O) ~s7P-1 as |s| »= , T<T, (3.142)
u0+(s,0) ~s as |s] += , Tt> T . (3.143)

Since p>0, it is easily verified from above that B(s)+0 as |s| + =, and

then by the application of Liouville's theorem [32], B(s) is uniquely

al

determined as B(s) = 0 for all s, Therefore, Go_(s,o) and uoi (s,0)

can be solved simultaneously from Equation (3.132) such that

Gg_(s,o) = Df(s) Gf(s) for all s (3.144)
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, .0
Al -1D+(S)

s
u i(s,0) = —— for all s . (3.145)
o+ Gg(s) ,

Substituting (3.129) and (3.130) into (3.144) and (3.145) yields

1v(1+R0)

~g 0 =1 1 —
uo_(s,O) =~ G_(s) 5 - (3.146)
V2n (s+kx) G_(s) G_(-kx)
v(1+Ro) - 1 - 1
~'s )
u_;(s,0) = ; — - k8 G, (s) . (3.147)
o+ TR (stk) | 6O(-k.) o+ 62(s)
Since ai+r(s,y) is known and it is given in (3.,120), it follows from

o+
(3.110) that

-3 1
jv (‘+R0)

0% (5,0) = —— . 3.148
U 4(s,0) 7 (s ( )

Furthermore, substituting (3.146) and (3.148) into (3.114), the

expression for Ao(s) becomes

-iv (1+Ro) iv (1+Ro) -1 1 -

Agls) = o ™ 62(s) - .
0 0. 0
MZn (s+k, ) Y2m (s+k)) 62(s)  GI(-k,) (3.149)
for all s
which can be simplified to
-iv (1+R ) G2(s) | |
Ay(s) = . for all's . (3.150)

T2 (s%,) &2(-k,)
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Therefore, Gg(s,y) can be obtained from (3.150) and (3.113) as

-iv (14R ) 6O(s)

- ——¢'® fory>0,andalls . (3.151)
VTR (k) 62(~k,)

Finally, the last step in this analysis is to take the inverse Fourier

transform of ﬁg(s,y) to obtain ug(x,y). It follows from Equation (A,.10)

that
. (0]
ud(x,y) = — “}ib v ) el BY o=isXyg
° /?;--w+ib /Zn (s+k,) 62(-k,) (3.152)

for y > 0, |x|<=,

T <b <<

- +

where the path of integration, as depicted in Figure 3.4, lies entirely
on the proper (top) Riémann sheet where Img > 0. When Im(k)=k2+0, the
medium becomes lossless and the new path of integration (b=0) is shown
in Figure 3,5, Note that Gg(s,y) has a pole sg = -k; in the lower half
s-plane t < t_ of the top and bottom Riemann sheets, and a pole due to
Gg(s) in the upper half s-plane t > T, which is evaluated next.

In order to evaluate the poles of GO(S), note that the denumerator
of G%(s) is the same as the denumerator of 6%(s). Thus, the poles

obtained in the even problem are the same for the odd problem. In other

words, the poles of Go(s) will lie on the proper (top) Riemann sheet if

Im(Go) = Im [Gor + 16013 = 601 <0 . ’ (3.153)
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Otherwise, the poles of G%(s) will 1lie on the improper (bottom) Riemann
sheet and will not contribute to the scattered fields as shown in
Section C. Using the results of part 1, and assuming Im (60) < 0, the

poles of Go(s) are

0 2. 1/2
s_ = k(1-8) (3.154)
and
2.1/2
s2 = -k(1-5,) (3.155)

where s? lies in the upper half s-plane t > 7, and it is the pole of
G?(s). Similarly, sg lies in the lower half s-plane t < t_ and it is
the pole of Gg(s). The poles s? and si are depicted in Figure 3.5, As
as in the even case, in order to factorize Go(s), it is convenient to

express 50 as

60 = cosEo = cos(£g+ig?) = cos&?cosh&? - isinsg sinhg? ,

Re(£%) = €7

m (3.156)

0 < <7 .

Substituting (3.156) into (3.154) and (3.155), s? and si become

m

s? = ksinao . 0 < Re(go) = 5? <7 (3.157)
- - m

$2 = -ksing®  ,  0< |Re(e)) =g <7 (3.158)

0 0
where Im(£7) = £/ > 0 because Im(8) = 8,1 < 0.
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When Im(so) > 0, the poles of 6%(s) will 1ie on the improper

(bottom) Riemann sheet. In this case, §? and gg are given by

1
% = ksing® , Im(£%) <0, 0 <Re(E2)< 7 (3.159)

b
O = ksing® , Im(g%) < 0, 0 <Re(£’)< 7 | (3.160)

where §? is the pole of G?(s) and Eg is the pole of Gi(s) as shown in

Figure 3.6.

C. ASYMPTOTIC ANALYSIS

The solutions of the even and odd problem given in Equations (3.86)
and (3.152), respective}y, are expressed in terms of an integral which,
except for very simple cases, cannot be computed in closed form.
Fortunately, in diffraction problems one is interested in the far field
solutions which can be obtained by applying asymptotic integration
techniques to (3.86) and (3.152). Here, the saddle point method [38]

will be used to obtain the leading terms of u:(x,y) and uz(x,y) for

large kvx2+y2,

1. Angular Spectral Mapping

It is common practice to introduce a change of variables via the

transformations
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s =g+ it = -kcosw = -kcos(a + 1Y) (3.161)
B ="k2 - s2 = ksinw = ksin(a + i¥y) (3.162)

where k = ky (k2 = 0, lossless medium) is real. The above
transformation is a mapping from the s-domain to the w-domain, which is
conventionally referred to as the angular spectral domain., All the
details of the mapping from the s-domain to the w-domain are given in
Appendix F. The former two-sheeted plane of B(s) becomes the periodic
plane depicted in Figure 3.7 with the role of the branch cuts replaced
by lines which are their images. It is obvious that the effect of this
transformation is to open up the function B8(s) and thus remove the
branch points and branch cuts associated with 8.

It is also convenient to make a change of variables from the

rectangular to polar coordinate system via the transformation

X = pCOSd ; y = psing (3.163)
where the quantities p and ¢ are shown in Figure 3.8.
2. Even Problem

Substituting Equations (3.161), (3.162) andv(3.163) into (3.86),

one obtains

v(l-Re)sin¢' J G (~kcosw) o Tkocos (w-4) 4,
S
u (ps¢) = :
€ 2mi Ps (cosw + cos¢') Gf(kcos¢')
(3.164)
0< (¢,0') <m
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W-PLANE
k=k, (REAL)

e
3 a

KImB:O

IMAGE OF HYPERBOLIC BRANCH CUT OF B (s) FROM -k
IMAGE OF HYPERBOLIC BRANCH CUT OF S8 (s) FROM +k
—— = —— |MAGE OF Ims—AXIS OF THE TOP RIEMANN SHEET
IMAGE OF REAL s-AXIS OF THE TOP RIEMANN SHEET

'/ TOP SHEET OF B(s) —SURFACE WHERE Im[3>0

y

Figure 3,7. The angular spectral w-plane.
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where PS is the new integration path in the w-domain as shown in Figure

e _
3.9. The pole sp = -kX

the s-domain is mapped to

= kcosé' on the proper (top) Riemann sheet in

wﬁ* = - ¢ (3.165)

in the w-domain, and the same pole on the improper (bottom) sheet in the

s-domain is mapped to

wﬁ' =+ ¢ (3.166)

Ay (p.#)

o X

Figure 3.8. Polar coordinates,
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in the w-domain, The pole of Gf(s) at sf = ksing®, which is located in
the first quadrant of the s-plane if Im(Ge) <0 (Im(ge) > 0), is mapped

to
e 3n 3n

L]
W= 7-8 =7~ -5, 0cRe(s®) <7 (3.167)
in the w-plane. Note that if Im (se) > 0, then sf = -ksinae will lie in
the second quadrant of the bottom Riemann sheet and its image in the

w-plane is

n

n L
Wg =& -Z=E -7 +iE, 0<Re(e®) <7, Im(e%) <0, (3.168)

The next step in the asymptotic analysis of u:(p,¢) is to deform the

i - { o\
path of integ ne steepest descent path (SDP) t

saddle point,

First, it is convenient to define the functions f(w) and Me(w) such

that
f(w) = icos(¢-w) = f (a,y) + if (a,7) (3.169)
v(1-Re) sing' Gf(-kcosw)
Me(w) = o (3.170)
2mi (cosw + cos¢') G_(+kcoss').
where
fr(“’Y) = -sin(¢-a)sinhy = sin(a-¢)sinhy (3.171)
fI(a,y) = cos(¢-a)coshy . (3.172)

The saddle point, denoted by W = ag + iys, is a point in the

w-plane at which the derivative of f(w) vanishes [38], that is
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w

f'(ws)=a%f(w>‘ o . (3.173)
S

Next, taking the derivative of f(w) and setting equal to zero yields

d

f'(ws) = aw'icos(a-w)| = isin(a-ws) =0 (3.174)

W .
S

™ 3n
Since the real part of w is restricted to the interval -7 < Re(w) < 77,

it follows that

W = é, or @, = ¢ and Y = 0, 0K ¢ < . (3.175)

The steepest descent path (SDP), where (ap, yp) is a point on this

curve, is given by

fFrlagsvy) = flag,vg)

.
s

frlagsvy) < Flag,v) . (3.176)

In specifying the contour of integration CSDP along SDP, it is important
to include the direction of integration as shown in Figure 3.9. From

Equations (3.175) and (3.176), the path of integration CSDP is

determined by

cos(¢-ap) coshYp =1 (3.177)

and

sin(a -9) sinhy, < 0 . (3.178)

Also, the angle b depicted in Figure 3.9 has to be computed. This is
accomplished [38] by twice differentiating (3.177) and evaluating the

result at the saddle point. Without going over the details, one gets
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= cos(¢-ap)coshyp =1 : (3.179)

da_ Yo -
_ P 1% =% ’
which means that
-7
¢s = 7 . (3.181)

Substituting (3.169) and (3.170) into (3.164), the expression for

ue\p,¢) becomes
U:(p,¢) = | Me(w) ekpf(w)dw . D< < (3.182)
e
Ty

where Me(w) has poles at wﬁ+, wﬁ- and wg as shown in Figure 3.9. After
the deformation of P: to the CSDP’ the field u:(p,¢) is represented via
- Cauchy's residue theorem, as the sum of the residues arising from the
pole singularities captured during this deformation and the integral
along the CSDP‘ Note that the steepest descent path CSDP’ depending on
the angle ¢, may run anywhere between the path SDP~ crossing the real
axis at a=0 to SDP' which crosses the real axis at a=m.

The paths SDP™ and SDP+ are depicted in Figure 3.10. Any pole
located in the shaded area shown in Figure 3.10 will be captured as the

- +
path CSDP runs between SDP and SDP . Applying Cauchy's residue theorem
in Equation (3.182) yields:
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Figure 3.9, Integration paths r,, and CSDP in the periodic w-plane for
k=k1 (real).
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uz(p,¢) = 27i Res Me(wg e U(op - $§)
_ e+\_ -
| e, Kof(w.") e+ ‘
- Res ‘ Mo (W) e Ulw.™ - ¢) l
- (3.183)
+ ) M) KPEW) g, 0< o<
Cspp

Ne -
where ¢ is computed later and U(¢ - $§), U(w$+- ¢) are the usual unit

step functions. The various types of waves that contribute to the field

u:(p,¢) are those arising from the following poles and saddle point of

the integrand in (3.182); namely from:

(i) The pole w$+ which is the zero of (cosw + cos¢'). It
contributes to the geometrical optics field when it is
captured. This pole is captured when 0<¢<m-¢'.

(i1) The pole wg which is the zero of A-(s). It
contributes to the surface wave field excited at the
edge (x=0,y=0) by the incident plane wave. This pole
may be captured only if Im(ae) <0,
(ii1) CSDP integral contribution. This contribution is always
present and when kp » =, it is asymptotic to a term

kof(w)

containing the value of the integrand M(w)e at the

saddle point w=w", It us usually known as the diffracted

field.
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The location of the poles in the w-plane determines the type of guided
waves they will contribute. Figure 3,11 illustrates the different types
of waves corresponding to poles located in the various regions of the
w-plane [39]. This diagram was obtained by examining the exponential

. kof(w) . . > >
function © in Equation (3.182). The vectors % and ¢, are the

propagation and attenuation vectors, respectively, and they will be
defined more carefully in section F, It is sufficient to mention at
this point that the waves propagate in the direction of Zp, and Za is
the direction of most rapid attenuation. As shown in section F, Zp and
za are always orthogonal to each other. Note that the proper surface
waves are iocated in quadrants I and II1; the improper surface waves are
located in quadrants VI and VIII; and the leaky waves in quadrants V and
VII. It can be shown that the magnitude of the propagation vector is
|zp|=kcoshGI where QI is the imaginary part of the pole w. This states
that for a pole with nonzero imaginary part, the wave that it
contributes will always be a slow wave in the direction of propagation.

+
"However, the projection of z_ on the x-direction may correspond to

P
either a fast or slow wave [39]. That is, 1Zp-;|=|cpx|=kcosﬁrcoshWI:1,
where Wr is the real part of the pole We Figure 3.12 illustrates the
regions where the waves are either fast or slow. Poles corresponding to
slow waves are located in the clear region, while those corresponding to

fast waves are found in the shaded regions of the strip -w/2<a<3n/2,
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First, the residue at w$+ in (3.183) will be computed, that is

M(w')e r = Tim (w-wﬁ+)Me(w)ek°f(w) . (3.184)
e+
WA

Substituting Equations (3.169) and (3.170) into (3.184) yields

-v(l-Re)

o-ikocos(¢+e')

! e+ e . (3.185)

Res Me(wr

) ekpf(wﬁ")—-,

In order to compute the residue at w = wg, it is necessary to write the
expressions for Gf(-kcosw). Using the results given in Appendix D and
Equations (3.162) and (3.96) yields

ksinw sinw

i
e - e 0 < Re(Ee) <72 (3.186)
ksinw + kcosk sinw + COSE

Ge(-kcosw)

e
1/2 n -W+E
e( \ —1 - cosw™ -1 37 - (3.187)
G (-kcosw) = | ———— exp | oy —— dt .
* sinze-cosw I e sint
- - 3r -w-g -
>
1/2 n e
e T 1+ cosw ™ —1 w-7 4 ¢ -
G_(-kcosw) = | ——— exp | 77 J Sint dt |- (3.188)
sing +cosw T e
- —- - w7 -k —
Evaluating Equation (3.188) at w = wﬁ+, one obtains
6e e+ e /2 sin(¢'/2) ' 1l e
-(-kcosw . )=G_(kcos¢')= o 172 exp | 2n J1(¢') | (3.189)

(sing -cos¢') | B
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where

n 1. 2€
7 -0 tE ¢ '
908" = | sint dt . (3.190)
3
7 -e'-E

It is convenient to express Gf(-kcosw) in terms of Ge(-kcosw) and

e
Gi(-kcosw). This can be accomplished by solving for G_(-kcosw); i.e.,

Ge(-kcosw)
Gf(-kcosw) e —— . (3.191)

e
G+(-kcosw)

Thus, Me(w) can be rewritten as
v(l-Re)sin¢' sinw

Me(w) : . e, e e *
2mi(cosw + cos¢') (sinw + cosg ) G_(kcosé') G+(-kcosw)

(3.192)

Substituting Equations (3.187) and (3.189) into (3.192) and using

trigonometric identities, the expression for Me(w) becomes

1/2

|_1-Re—- [(singe-cosw) (sinae'cos¢')]

sinw + cosge

sec ((w-4')/2) + sec ((w+¢')/2) | e

- - (3.193)
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. e 31 e e
Now, the residue at w, =7 - £, Im (°) > 0 can be computed such

that
- kpf(wi)" Lim e kof(w)
= (w-ws) M (w) e

. (3.194)
W*Wg €

Substituting (3.193) into (3.194), one obtains

e cost® _f(singe-cos¢')—11/2
. —ﬁ ( e) kpf(ws)" v
es w_)e = —
e’s 271 ing'+cose® sing®
- - . . e
« | sec ((wg-4')/2) + sec ((wE+4')/2) I e~Tkesin(e+e")
—_ |
I | - 1
cexp | 7w (56 + 5 | L5 >0, 0<E <7, (3.195)

The final step is the asymptotic evaluation of the integral along
the path CSDP‘ Before the diffracted field is computed, it is important
to examine the exponential behavior of the various contributors to the
field U:(p,¢). A plot of the zero exponential decay contours is shown
in Figure (3.13). It is seen that these contours divide the w-plane
into two regions: one in which the exponential decay is greater than
that at the saddle point, and the other region in which there is
exponential growth which represents non-physical fields.

Since the pole wﬁ+ lies in the Re (w) = a axis, it has the same
exponential decay as the saddle point, namely, zero exponential decay.

On the other hand, the exponential decay of the surface wave field is
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greater than that at the saddle point as shown in Figure 3.13. There is
one special case when the surface wave field will have zero exponential

e )
decay: when Re (Ge) = 8ap = 0 (gr = 7, lossless impedance wall) and

¢ = n. In this case, the pole wi will 1ie on a zero decay contour.

In order to perform a uniform asymptotic evaluation of the steepest

descent integral, it is necessary to assume that |Im Gel is large enough

so that the surface wave pole we

S is never close to the saddle point

we = ¢or the poles w$+ and wﬁ'. A11 the details of the saddle point

analysis are shown in Appendix G and note that the largeness parameter

is kp. Thus, for large kp, the resulting expression is given by

[ M (w) k of (w) d -vei"/4 1-R,
Copp & © dw = u(ed) ~ T |2 _
o o 1/2
[(sing -cos¢') (sing -cos¢)] o o
y " exp(-LJ7(¢") + J7(¢)]/(2m))
siné + cosg
- _ e'ikp
* * -
+ | sec ((#+4')/2) F (kLa") + sec (($-6')/2) F (kLa")_ =
(3.196)

where F(x), which is referred to as the transition function [11], is

defined as follows:

. © .2
F(x) = 2i/x e X [ &7t gt (3.197)
'3
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Demarcation of regions of w-plane about the saddle point
characterizing the rate of exponential growth or decay of
waves associated with the pole locations.
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and
a® = -i[f(¢) - f(wﬁ*)] = - [i-icos(cb-ws.t)] - 2c0s” (¢%6')/2) .

(3.198)

Furthermore, for the case of plane wave incidence: L=p, and the field
ug(p,¢) defined in Equation (3.196) is commonly referred to as the
diffracted field.

The expression for the scattered field uZ(p,¢) is obtained by
substituting equations (3.185), (3.195) and (3.196) into (3.183). Thus,

for large kp
uS(5,8) ~ v(1-R)e T POSNy(aggty 4 uM(p,0) + ulls,0)

0< (¢,9") < m (3.199)

where u:w(p,¢) is the surface wave field which is excited only if
Im (Ge)<0 (Im(&e)>0). The expression for u:w(p,¢) js given by

e 1/2
VvV COS§E

SW
(ps¢) = -
€ sinae

—'2(sinse-cos¢')—
sing' +cos£e I

sec [(w§-¢')/2) + sec [(w§+¢')/2)

- -
B (J?(wg) + J§(¢')] -ik(xsing® + ycost®)

. exp exp U(¢-$§),

0< (¢, ¢'), < (3.200)
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~e

where ¢ is computed next. Note that if g? < 0 or Re(£®) = €8 = 0, the

r
pole wg is not captured. Thus, assuming O < gi < w/2 and g? > 0, it

follows from (3.177) and (3.178) that

'-sin(3§+£ﬁ)cosh£§ =1 cos(sﬁ+$§)sinh§? <0 . (3.201)
Therefore, one concludes from (3.201) that
o + E. <77 . (3.202)

Then, solving for $§ from (3.201) yields

~e e .
=7 - +
o g. + arcsin

LO<E ey, €50 . (3.203)

Since ¢ is restricted to the interval 0 < ¢ < w, the pole wg will be

captured only if

-1 -

g

-3 @

> arcsin I

e
, ©£50 . (3.204)
| cosha? I

Finally, the expression for the total field ue(p,¢) is obtained by

substituting Equations (3.18) and (3.199) into (3.21) such that

4o (059) ~ ug(ps4) +ug(,9) + u"(0,8) + ug(es8)

0< o< (3.205)

where U;(p,¢) is the incident field defined in Equation (3.16) and

Ug(p,¢) is the reflected field given by
uL(£,0) = va (') e TKPCOS(OHT) 0 ¢ (g,9%) < (3.206)
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Ae(¢l)= 1 for ¢ + ¢ <
Ro(4') for ¢ + ¢' >

. (3.207)

Before the odd problem is solved, it is convenient to write the
diffracted field in standard form [11]. Let QE be the diffraction point
at the edge which in this case is the origin (x=0, y=0). It follows

from [11] that the diffracted field ug(p,¢) can be expressed as

follows:
. 1kp

ud(5,8) = ul(0E)DI(s, (3.208)
where

ul(0E) = uy(0,0) = v . (3.209)
Substituting (3.196) into (3.208) yields

: 1/2
d . L l‘l-Re“' [(SinEe-cos¢)(sinEe-cos¢')]
Da(9:0") = g 2

- - sing + cosEe

L =

-1/(2n) (J +J (")) ' ' T PR
sec(8 /2) (kLa ) + sec(B/2)F (kLa™) |,

< (¢, ¢') < 7 (3.210)

where D (¢ ¢') is the even UTD diffraction coefficient, and

B" = ¢ t ¢' . (3.211)
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Note that the transition function F in (3.210) makes the
diffraction coefficient Dg uniform such that the diffracted fie]d of
(3.208) exactly compensates the discontinuity of the reflected field in
(3.206) across the reflection shadow boundary., Consequently, the total
high frequency UTD field as given in (3.205) is continuous everywhere
away from the diffracting edge as long as the surface wave field is

insignificant away from the impedance wall,

3. 0dd Problem,

Exactly the same procedure as in the even problem is followed to

obtain the uniform asymptotic solution for the odd problem. Thus, the

first X,y) in the

w-plane., Substituting Equations (3.161)-(3.163) into (3.152) yields

-v(1+Ro) G?(-kcosw) sinw eikpcos(w-¢)
S
u (p,9) = : ] dw ,
° 2w o (cos¢'+cosw) G?(kcos¢') (3.212)
r
W

0K <

where the path of integration PS is shown in Figure 3.9. The steepest

descent path CSDP and the angle ¢ are the same as in the even problem,

That is, ¢_ = -n/4 and CSDP is depicted in Figure 3.9. The pole

S

]
sg = -kx = kcos¢' of the integrand in Equation (3.152) on the top

Riemann sheet of the s-domain is mapped to

WO = ey (3.213)
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in the w-plane, and the same pole on the bottom Riemann sheet is mapped

to

wg' =7+ ¢ (3.214)

in the w-plane. Furthermore, the pole of G?(s) at s? = ksing®

(Im(so) < 0) is mapped to

3n 3n m
W =7 - =78 -igf , 0<Re (%) <7 (3.215)
On the other hand, if Im(so) > 0, the image of the pole s? = ksingo in

the w-plane is

m L
e -g=2-7+18 , 0<Re(X) <7 , Ime® <0 .(3.216)

Next, it is convenient to define the function Mo(w) such that
-v(1+Ro) G?(-kcosw) sinw

M) = — - ) (3.217)
2mi (cos¢'+cosw) G_(kcosé')

Substituting Equations (3.169) and (3.217) into (3.212), one obtains

o) = [ M) ™M, 0cscn (3.218)

r

£ O

Note that Equations (3.182) and (3.218) are similar. Thus, the results
obtained in Section 2 can be used here. It follows from Equation

(3.183) that
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- kof (wC)—

M (w0)e s

0 _ .
us(p,¢) = 2ni | Res o (W

U(4-3¢)

- Res , Mo(wr ) e r c o
- - SDP
- (3.219)
where 32 is unknown at this point,
The residues at w: and wﬁ+ are computed in the same way as in
Section 2, The residue at w?+ is
—_ kpf(w0+)"' V(1+R0)
Res Mo(wg+) e r = = e Tkocos(o+e’) . (3.220)

Using the results of Appendix D, the functions Go(s), G?(s) and Gg(s)

can be expressed in the w-domain as follows:

1 n
GO (-kcosw) = — , 0<Re(£) <7 (3.221)
k(sinwtcosE )
1/2 . 1r/2-w+5°
N — = gt | (.222)
G, (-kcosw) = exp | 7¢ T dt .222
* k(singo-cosw) sint
3n/2-w-£°
1/2 w-1r/2+§°
o - 1 - 1 t -
G_(-kcosw) = 5 exp | 7 | adt | .
k(sing +cosw) o
- - - wn/2-E = (3.223)
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Evaluating G?(-kcosw) at wg+, one obtains

_ ) _1/2
G?(-kcosw?+) = G?(kcos¢') = 5
k(sing -cosé¢)
n/2-4'+E°
| 1 to
cexp | ¢ | sint dt I . (3.224)
3n/2-¢'-£°

The function G?(-kcosw) can be expressed in terms of Gg(-kcosw) and
G?(kcosw) such that

1/2

o G (-kcosw) (k(sinso-cosw)) -1/(2w)dg(w)
G_(-kcosw) = o = o e (3.225)
G+(-kcosw) k(sinw+cosg )
where
n/2-w+§0
o t
N = | Gopdt . (3.226)
3n/2-w-E°
Consequently, Mo(w) can be written as
1/2
. .0 .0 )
v(1+R0)cos(w/2)[s1n£ -cosw)(sing -cos§ ] '?%(J?(W)+J$(¢'))
Mo(s) = e

2mi (sinw+cosg°) 2sin(¢'/2)

« | sec ((w-4')/2) -sec ((w+d')/2)

(3.227)

where the following trigonometric identity has been used in (3.227):
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-4sin(w/2) sin(¢'/2)
cosw + cosé'

= sec ((w-¢')/2) -sec ((w-4')/2) | (3.228)

3w
Now it is possible to compute the residue at wg =77 - g0 (where it is

assumed that Im(£°) > 0) such that

_ 172
- - . .0 )
| 0, kof (W) -v 2cos(¢'/2) ' 2(sing -cos¢')
Res | M (w )e = -
o''s 2wi l sine°
cos(w:/Z)
« [ sec ((w°-¢')/2) -sec ((w°+¢')/2)]
S S e-nnA'J.rnc_o
QY 'UUJQ
-ik psin($+£0) _:E_ 0,0 0, vy
e * exp o (Jl(ws) + \]1(4’ )) s
0 m
0 < Re(E") <3 (3.229)
where the following equality has been employed:
1+R, sing' 2sin(¢'2) cos(¢'/2)
5 = = - S . (3.230)
sing' + 60 sin¢’ + cos§

In order to complete the solution of ug(p,¢), it is necessary to

evaluate the integral over CSDP asymptotically using the saddle point

method. As in Section 2, assume, that |Im 8, is large enough so that

0

+ -
S is not close to the saddle point or the poles wo 0

the pole w r and W .
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Therefore, for large kp (see Appendix G), one obtains

4R l

in/4 '
kof(w), _ .d -ve cos(¢/2)
I Mo(w)e ° dw = uo(°’¢) ~ 25k _2 _J sin(¢'/2)

Cspp

1/2
I~ - [(singo-cos¢)(sinso—cos¢')]

1
+ exp ! “7x (97(8) + 97(s"))

. 0
sin¢ + COSE

- . _ikp
* * e
.| sec ((4-6')/2) F (kLa") - sec ((¢+6')/2) F (kLa") ,
3 | e
0< (¢, ') < m
(3.231)

where the functions F(x) and at were defined in Equations (3.197) and
(3.198), respectively. Furthermore, the field ug(p,¢) is the diffracted
field and L, as in the even problem, is equal to p for the case of plane
wave incidence.

The expression for UZ(p,¢) is obtained by substituting equations

(3.220), (3.229) and (3.231) into (3.219). Thus, for large ko

0 (0,8) ~ = (1R )e KPS (# Dy (nggty 4 u(0,0) + uG(000)
0< (¢, ¢') <7 (3.232)

where usw(

o
wave when Im(§_) < 0 (Im(£°)>0). ugw(p,¢) is given by

p,9) is the surface wave field excited by the incident plane
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172
_v2cos(¢'/2)cos(wg/2) —é(sinao - cos¢')

SW
u_"(x,y) =
0 sing' + cosg’ sing’
a ] 0 0/.,0
-1/(27)(97(8")+J7(wg))
. | sec ((w:-¢')/2) - sec ((wg+¢')/2) e 1 >
-ik(xsin§°+ycosE°) o
e U(e-0) y >0 (3.233)
where
~0 ) B 1 -
¢y = T - &t arcsin . (3.234)

cosh 5?

As in the even case, ¢ is restricted to the interval 0 < ¢ < n, It

(o}

follows that the pole w.

will be captured only if

— 1 —

0 .
E_ > arcsin

0
" . g>0 . (3.235)

0
_Foshgl_
Recall that the total field uo(p,¢) is given by

Ug(ps) = ul(psd) + UL (0,0) + uc(p,8) , 0 < (4, ') < v . (3.236)

Substituting (3.232) into (3.236) yields

SW(

0 p’¢) + Ug(p,¢) s

0< (¢, ¢') <7 (3.237)

Ug(psd) = Ul(p,8) + Ul(0,8) + u

where U;(p,¢) is the incident field given by Equation (3.16) and ug(p,¢)

is the reflected field which can be written as

109



~ik pcos(¢+¢')

o] _ ’ '
u.(e,8) = vA (¢')e (3.238)
where
A(gh) = | Lo e (3.239)
Ry (8),4%8">m .

Finally, as in Section 2, the diffracted field can be expressed as

follows:
ik p
Wo.0) = ul(0E) n(,00) 3.240)
olP+) = Uo(QE) Dy(4,4) — (3.
p
where
ug (QE) = u; (0,0) = v (3.241)
and substituting (3.231) into (3.240) yields
. - - . 0 . 0 |1/2
_e1ﬂ/4 1+RO cos(#/2) [(sing -cosé)(sinE -cosé')]
d
D (¢,9"') = - N
0 Y2k 2 sin(¢'/2) sing + cose®
-1/ (2m)[37($)+37(6")] e s
- [sec(B /2)F (kLa )- sec(B /2)F (kta )] ,
0< (¢, ¢') <m (3.242)

which is the odd UTD diffraction coefficient. The diffraction
coefficients Dg and Dg will be referred to as the two-dimensional
coefficients to differentiate them from the diffraction coefficients
that will be obtained in Chapter IV fof the more general case of oblique

incidence. Again, Dg in (3.242) makes ug uniformly valid across the RSB
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where ug becomes discontinuous such that the total high frequency UTD
field in (3.237) is continuous there (assuming uzw is insignificant away

from the impedance wall).

D. EVALUATION OF THE DIFFRACTED FIELD ON THE IMPEDANCE SURFACE

The asymptotic solutions presented in Equations'(3.196) and (3.231)
include terms up to the order k’”2 with respect to the incident field.
It is easy to show that both even and odd diffracted fields to order
k'l/2 vanish when the observation point is on the impedance surface,

i.e., ¢=m, However, there are some applications when a better

ion of the diffracted field is necessary; for
example, when analyzing antennas mounted on an impedance wall [31]., In
this section, a more accurate asymptotic evaluation of the integral
along the steppest descent path is considered.

Recall that the function Me(w) defined in Equation (3.170) has
three poles in the periodic w-plane. When the even diffracted field was
~evaluated in Section C, it was assumed that the pole wg was never close
to the saddle point, so only the geometrical optics poles were allowed
to be near the saddle point. In this section, the pole wg will also be
allowed to be close to the saddle point, and details of the method [40]
are given in Appendix G,

Using the results of Appendix G, the uniform asymptotic evaluation

of the integral in (3.196), which takes into account the presence of the

poles we¥ &~ &
r s W, and w., is given by (for large kp)
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in/4 | 1-R_
| wwet® May = udi5,0) ~ -
c e\ W€ W= Ugle,d m - 2 _
SDP
. e . e 172 e I
[(sing”-cos¢)(sing -cos¢')] -1/(27)(J7(9)+31(e")
L] L] e

sing + cost®

. | (sec(8+/2)T(a+,ag) + sec(B /2)T(a”

where the function T, which is referred to

function, can be expressed as follows:

e 1/2 1/2

- e1kp

/o (3.243)

e
,ap)

as the composite transition

. (a3) F(-kLa®) - (a7) F(-kLag)
T(a'ay) = T . (3.244)
a - l{a
p

The function a~ was defined in Equation (3.
transition function as in Equation (3.197)
of complex argument [41]. In order for (3.

argument of v¥x is restricted to [41]

-3
‘11 < arg (¥x) < %

as shown in Figure 3,14, Furthermore, the

by
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198) and F(x) is the same
but generalized to the case

244) to converge, the

(3.245)

. e .. .
complex function a, is given

(3.246)




\
REGION WHERE THE ARGUMENT OF /x IS
ALLOWED TO EXIT

Figure 3,14, Vx plane.

It follows from (3.245) that

-3n

3~ < arg [agj < %‘ (3.247)
and

-37 + L |

- <arg [a 1<7 . (3.248)

In other words, the square root function ¥x in (3.245) has a branch cut

in the x-plane as depicted in Figure 3,15,
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Figure 3.15. Top sheet of x function where —5~ < arg (x) < 5o

Note that the new more accurate expression for the diffracted field

Ug(p,¢) given in (3.243) does not vanish when ¢=n, that is
d

In order to obtain a new more accurate expression for the odd
diffracted field Ug(p,¢), which does not vanish on the impedance
surface, a different procedure is followed. The function Mo(w) given in
(3.227) is zero when the saddle point is equal to ¢=m, which means that
a higher order term is required. Instead of computing a higher order
term by the method described in Appendix G, another approach which is

given by Felsen and Marcuvitz [42] is followed. The details are given
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in Appendix H and only the final result is presented here. Thus, when

=7, and kp is large

: 1 172 1 .
ug(p,w) ~ 1 2i /7 e'1kp(1'C052¢ ) Q[-ib vkp] + (%3) 5l elke
172 =1/(2m)03(¢")
v sin¢'(sin2§°-cosz¢') e 1
2mi (sine' + cost®)
‘ -1/(21)03 (w+4") -1/(2w)d‘{(w-¢')‘|
e
. - (3.250)
l cosg’- sing' sing' + cose® l
where
b =v2 e sin(e'/2) (3.251)
and
[ x2
Q(x) = J e ™ dx . - (3.252)
y

The new expression in (3.250) is not identically zero at ¢=n for a
finite p. However, as shown in Appendix H, when the parameter

Ib/R5] » =, u3(p,m) > O
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E. SLOPE DIFFRACTED FIELD

When the diffracted field was obtained in Section C, it was
implicitly assumed that the incident field ui(p,¢') had a slow spatial
variation in the vicinity of the diffraction point (x=0,y=0),except for
the phase along the incident ray. When this is not the case, it has
been shown in [10] that the diffracted field must be supplemented by a
higher-order term in the asymptotic expansion of the integral along

C This higher order term which is referred to as the slope

SDP*

diffracted field uSd(

psd), is given by the following expression [10]:

au’ s elke
pr0) = | d (¢,8') (3.253)

21

where the vector n', and the point of diffraction (QE) are shown in
Figure 3.16. The expression for the slope diffraction coefficient

ds(¢,¢') is as follows:

d

d°(0,8') = ¢ 347 (4 (3.254)

where Dd(¢,¢') is the diffraction coefficient which was defined in

Section C. Substituting Equation (3,210) into (3.254) yields
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Figure 3.16. Geometry for slope diffracted field.

"1-R
e

- l /
-1 eI ™% [(sing®-cos$)(sin®-coss )]1 :
dse(¢,¢') T I_z

Y2k e

sin¢ + cosg

-1/(2m) (35(4)+97(4"))
e

[sin(87/2)F (kLa")-sin(8%/2)F  (kLa*)]

+ [sec(8%/2)F " (kLa*)+sec(8™/2)F (kLa™)]

B sing' cos¢’ n/2+E5-¢' 3n/2-¢'-£® _1
e - e, T e *
2(sing -cos¢') (sin¢'+cosg’) 2mcos(E -¢') 2wcos(¢'+£e) l

(3.255)
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' *
for the even slope diffraction coefficient. The function FS (kLa) is

given by

Fo(kLa) = 2ikL (1-F (kla)) . (3.256)

Similarly, the odd diffraction coefficient can be obtained by
substituting (3.242) into (3.354). After some simplification, one

obtains

. Vo172
-2 e"'/4 cos(¢/2)[(singo-cos¢)(sin£°-cos¢ )]

SO Y o —
d (¢’¢)-1'k /?'TW

(sing + cosso)(sin¢'+cos§°)

-1/(2n)(37(9)+07(6"))
e e

cos(¢'/2)[sin(8"/2)F *(kLa')+sin(B+/2)FS*(kLa+)]

S

+
+ [sec(B™/2)F (kLa™)-sec(8 /2)F (kLa')]

_-cos(¢'/2)sin¢' cos(4'/2)cosed’  sin(4'/2)

2(sing°-cos¢') (sin¢'+cos§°) 2

cos(4'/2)(n/2+£%-4") cos(¢'/z)(3n/z-¢'-s°)_]
+ + \

2ncos(5°-¢') 2wcos(¢'+50)

(3.257)
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Adding the slope diffracted field to Equations (3.205) and (3.237),

the total fields ue(p,¢) and uo(p,¢) become

sw(

Ug(ps8) ~ ul(p,8) + ul(p,0) + uS >

ps¢) + Ug(p,¢) + ue O,¢) ’
0< < (3.258)

and

i sw(

Ug(Ps®) ~ ug(p,8) + ul(p,8) + ul o

o (s9) ,

0< < . (3.259)

0,8) + ul(o,0) +u

F. SURFACE WAVE EXCITATION

Let the incident wave be a surface wave field as shown in Figure

3.17. Assume that

Uy = Ve =ve e (3.260)

is the incident surface wave field, where

= xB o+ iqy | (3.261)

is the complex propagation constant. Note that the constants 8 and a

are also complex, that is

~

B =8+ i (3.262)

and

Q?
[

= a + 131 . (3.263)
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Figure 3.17. Geometry for surface wave excitation.

Rewriting Z; in terms of real and imaginary parts, one gets

AT (3.264)
where E; and E; are the real and imaginary parts of 21, respectively,

It follows from Equations (3.262) and (3.263) that

C = X Br - y GI (3.265)
and
[ EI +y ;r . (3.266)
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1. Even Problem

The total field can be expressed in terms of the unperturbed and

scattered fields such that

~ s

Ua (X,¥) = ug(x,y) + ug(x,y) (3.267)
where

Gé(x,y) = uésw(x,y) =v exp(igex - Egy) for |x|<= , y>0 (3.268)

is the unperturbed field. It follows from Equations (3.8) and (3.17)

that
~N o~ .~ I e _ . e e
a” = a + iap = 1k6e = jkcosg = 1kcos£r costhI
+ ksing’ sinhe] (3.269)
and
~ ~ 2 172
ée = Eﬁ + 18? = k(l-Ge) = ks1'nF,e = ksinsi coshE?

+ 1ksinha§ cosgﬁ . (3.270)

Note that the unperturbed field exists on the whole impedence plane
shown in Figure 3.2. Substituting Equations (3.269) and (3.270) into
(3.265) and (3.266) yields

[ kcoshg? (x sinzﬁ -y cosEi) (3.271)
and

rie KsinneS ) e *~ e

%a = ksinhgy (x cosg. + y sing) . (3.272)
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The vector E;e is usually referred to as the propagation vector, while

»ie . . . e
&y 18 known as the attenuation vector. It is easy to show that Cp
and E;e satisfy the following identity:
ie »ie
gy Ty =0 . (3.273)

Recall that Ge is either the normalized impedance (TEZ) or the
normalized admittance (TMZ). It follows from (3.269) that the surface

wave field u;w exists if and only if Im (Ge) < 0. In other words, it

exists if

Im (Zs) < 0 for the TEZ polarization (HZ) (3.274)
or

Im (Zs) >0 for the TMZ polarization (Ez) (3.275)

Thus, for a given surface impedance Zs’ only one polarization of the
surface wave field can exist,

The next step is to solve for the scattered field u:(p,¢). Exactly
the same procedure as in the case for plane wave incidence is followed

to solve for u:(p,$). The scattered field satisfies Equations (3.22),

s
e
(3.23), and

d -9 ~
3}'u2(x,y) = 3y ue(x,y) fory =0, x > 0, (3.276)

Details of the solution are shown in [46] and in [43] where the dual

integral method is employed. For large kp, the total field ue(p,¢) can

be expressed as
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. ¥ d
ug(ps8) ~ug " (p,8) U(s-32) + ug>"(p,0) U(6-35) + ug™(0,0)
0<¢o< ™ (3.277)
where
- o -
rsw -(1-sing®)v q 6T | ~e e
ug  (psd) =""j;;“;‘" exp | —— | Tipt dt | exp(-i8°x - a%y)
ng
- 0 - (3.278)
is the ref]ected field and
dsw ve'i"/4 icost®
ug- (p,9) = .
Y27k (sing -cos¢)
Zsinge(1+cos¢) o eikp
. o o exp(J,(8)/(2m)) —— (3.279)
(1+4sing™)(sing +cos¢) /P
is the diffracted field. The function J3(4) is given by
e
eSemz 2
e\ -
() = | sing 4 = ] Sipg du . (3.280)
9-£5+n/2 0

The diffracted field ugsw(p,¢) was computed assuming that no poles

were close to the saddle point. In other words, Equation (3.279) is not

a uniform asymptotic expression, This means that ugsw is a valid

expression away from the shadow boundaries ¢=$; and ¢=$§. However,

near the same shadow boundaries ugsw(p,¢) is not correct because the

123



total field will be discontinuous when ¢=$; and ¢=$§. In the next

dsw

section, a uniform asymptotic expression for Ug

(p,4) will be obtained.

SW SwW

r
and u

e are not very significant with

The surface wave fields u;

dsw
(

respect to Ua p,$) when the observation point is away from ¢~w,

Therefore, they can be ignored when the angle ¢ is away from the

impedance surface and the expression for ugs

W given in Equation (3.279)
is quite accurate,
The angle $§ was defined in Equation (3.203) and $;, which is

computed in exactly the same way as $§, is given by

fR— 1 —

COSE?

~i e .
¢e = £ =~ arcsin

,0<E <2, €l >0, (3.281)

As in Equation (3.261), one can define a vector Zre such that

»re ~ ~p S o~ Pp *r
e . 3 3 ™ e e

=g "+ 1Ea (3.282)

where E;e and Z;e are the propagation and attenuation vectors of the

reflected surface wave field ugsw, respectively.

It follows from (3.282), (3.269), and (3.270) that

Ege = =X Eﬁ -y 3? = kcoshE? (-xsinﬁﬁ - ycosai) (3.283)
r - - . ~ ~
Eae = =X B? +y &i = ks1nh£?(-x cossﬁ + ys1n5ﬁ) . (3.284)
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*re Tre s s Tre
The vectors Ep and Ea are shown in Figure 3.17. Furthermore, Ep and
&>
E;e satisfy identity (3,273), and £% has to satisfy Equation (3.204) so

that the pole contributing to the reflected field ugsw can be captured,

2. 0dd Problem

In this case, the scattered field uz(p,¢) satisfies Equations

(3.103), (3.104) and

ug(x,y) = -Go(x,y) forx >0, y=0 (3.285)

where ﬁo(x,y) is the unperturbed field given by

0 (x,y) = ugsw(x,y) = v exp(ig% - &) (3.286)
where
L = ikcoste® = ikGo (3.287)
172
B = ksing® = k(1-82) . (3.288)

It follows from [43] that the total field uo(p,¢) is asymptotically

equal to

r'Sw

o (0, 0)U(8-8;) + ™" (0,0)U(4-82) + u

dsw
o (

psd) »

0K < (3.289)

where 32 was defined in Equation (3,234) and E; is given by
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~i _ .0 :
¢0 = gr arcsin

-1

coshg?

, 0<E w2 , &

(3.290)

The field ugsw is the reflected field which is given by the following

expression:

Y]
uO

where

The propagation vector Cp

+ro
g

>0
%

_ _o50
xBr

0
vcosg® -1 2g7-m u izro
(pyd) =~ exp T J sing dU | ©
sing
_ 0 -
o R APy .

>
o s equal to

- ; E? = kcosh&?(-;sinig - ;cosig)

and the attenuation vector Zgo is given by

The

>ro
Ca

udsw
0

(3.291)

(3.292)

(3.293)

(3.294)

e
exp [1/(21:).](2)(4,):, —_— , 0< ¢ < 7 (3.295)

= =X E? + ; Eﬁ = ksinhE?(-xcosEg + ysinig)
. . dsw
diffracted field U, can be expressed as follows:
e sing
(ps¢) = . 0
o sing -cos¢
1/2
2sing° Tke
0
sing +cos¢ )
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where

o+£%-m/2 " 260-x "

0

Jo(e) = ] sing QU - ) Sipg du . (3.296)
$-£0+n/2 0

As in the even case, the diffracted field is computed assuming no poles
are close to the saddle point. In other words, the éxpression for

udsw(p,¢) in (3.295) is not uniform, Therefore, the total field uo(p,¢)

o}
is not continuous at the shadow boundaries ¢=$; and ¢=$g. A uniform
expression for uo(p,¢) will be obtained in Section 3. Furthermore, in

order for the field ugsw to exist, g% has to satisfy Equation (3.235).

3. Analytic Continuation

There is another way to obtain the total fields ue(x,y) and uo(x,y)
by an analytic continuation of the angle ¢' into the complex domain for
the case of plane wave excitation [24].

Recall that when the angle of incidence is equal to the Brewster

angle $b’ the Fresnel reflection coefficient vanishes [21] such that

sin$b-coss
R(¢' =) =——— =0 . (3.297)
sing, +cosE

It follows from Equation (3.297) that

~

o, =m/2tE . (3.298)
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Substituting Equétion (3.298) into (3.16), one concludes that the only

possible solution is

4y =T/2+E . (3.299)

EVEN PROBLEM

Substituting Equation (3.299) into (3.16) yields

. . e . . e

ulS(4,58) = verTkecos(e-m/2-87) _ \ mikpsin(4-£7) (3.300)
or

u;sw (¢,$§) =y exp(igex - ;?y) (3.301)

which is identical to Equation (3.268). The expression for uZ(o,$§,¢)

becomes

'Gf(-kcosw) eikpcos(w-¢)

J
s, ~e

u (e, ,6) = : dw . (3.302)
€ b 2mi PS (cosw-sinse) Gf(-ksin&e)

The original geometrical optics poles wet

Q-
~ and W. become

Wl e n o8 =2-6% , 0< <2, 50 (4.303)
r b r . I
and
W= em+ G = em/2 4, 0< E<w2 , E]>0 (3.304)

e+

where the new poles Wr

and Qs' are depicted in Figure 3.18. Note that
in this case, the pole Wﬁ' will contribdte to the total field unlike the
e+

case for plane wave excitation where W contributes to the total field,

Deforming the contour of integration Ps, one gets
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uS(p,4) = 2ni [-Res(HE7)U(FL-0) + Res(w)U(4-35)]

vcose® G (~kcosw) eikpcos (w-4)
dw (3.305)

2ni Cqpp (cosw-sint®) Gf(-kcosﬁi')

where the steepest descent path CSDP is shown in Figure 3.18.

The residue at Wﬁ'is given by

vcosg® Gf(-ksinge) R
eikpcos(& -n/2-4)

Res(We™) =
T cose® 2ni 65(-kcoswF )

v ~
= o exp(iBex - E?y) . (3.306)

In order to compute the residue at wg it is necessary to rewrite

6% (-kcosw)/GS(-kcoswe™). Substituting Equation (3.167) into (3.304)
- - r

yields
W= m/2 4 30/2 - e = - . (3.307)
Thus,
Gf(-kcosw) 6% (-kcosw)

e e ~e-
G_(-kcosw)/G_(-kcosw_ ) = =
r Gf(kcoswg) Gi(-kcosw)Gf(kcoswg)

(3.308)
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Substituting Equations (3.186)-(3.188) into (3.308) one obtains

- - 172
6% (-kcosw) sinw [(singe-cosw)(sinie-coswg)]
Gf(-kcos~ﬁ') sinw+cosg® | 2sin(w/2) sin(ws/Z)
cexp | -(I7(wS) + af(w))/(2m)) I . (3.309)

Now the residue at wg can be computed, After some simplification, the

residue at wg can be expressed the following way:

v(1+cosw§)
Res(wg) = e exp (-J?(wg)/n) exp(iBex - E?y), y>0

21r1'coswS (3.310)

where
e
2 -m
IS(we) = 98(3n/2-¢%) = | t/sint dt . (3.311)
1'% 1 0

For the case of plane wave excitation, the uniform asymptotic
evaluation of the integral along CSDP was equal to the diffracted field
ug(p,¢). Therefore, the diffracted surface wave field can be obtained

directly from Equation (3.196) by letting ¢'=$§ = n/2 + £° such that
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. 1/2
-vem/4 [(sinse-cos¢) 25in£®]

dsw
e (P2d) Jok 2(sing + cost®)
cexp i -(Ji( )+J (w )/(Zw)

.i sec((¢+n/2+£%)/2) T(a e,a ®) + sec ((¢-w/2-ae)/2) T(a;,aS) r

(3.312)
where T was defined in (3.244), az is given by
* 2 | e -
a_ = 2cos (¢x(m/2+€%))/2 (3.313)

and F(x) is the generalized transition function where x can be a complex
number. As stated before, the argument of /X has to satisfy Equation

(3.245) in order for (3.312) to converge.
Substituting Equations (3.306),(3.310) and (3.12) into (3.05)

yields
uS = (p,0) ~ -v exp(18% - &%) U(FL-0) + ul™(p,0) + uT(0s0) ,
0< o< (3.314)
where u;sw (p,9) is the reflected surface wave field given by
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v(1+cosw§)
ursw(

2M(e,0) = —-;;;;;;-'exp(-Ji((wg)/") exp (-1 8% - &) U(4-32)
S

(3.315)
which is identical to Equation (3.278). The total field ue(p,¢) is

obtained by substituting Equation (3.314) into (3.267). Thus, for

large kp
ug () ~ g™ (0,85) U(e-30) + ut™ (0,0) + ul™(p,9) (3.316)
where ulsw(¢,$§) was defined in Equation (3.301).

dsw

Note that the expression for Ug

(p,9) in Equation (3.312) is
uniform, whereas the non-uniform result was previously given in Equation
(3.279). Thus, one can get the expression in (3.279) from (3.312) by
assuming that IIm(Ge)l is large. In other words, for large IkLazl and
|klag|, it can be shown that [11] F(-kLag) = F(-kLa;) = 1. It follows

from (3.244) that

T(a ,aS) -1 ) (3.317)

D |+

Substituting Equation (3.317) into (3.312) yields

. - —1/2
dsw ve 17/4 icosE® 2sine® (1+cos ¢)
u (D,¢) =
€ V2K (sinze-cos¢) (1+sin£e)(sinEe+cos¢) I
— —1/2 )
| sin¢-cosg® -1/(2n)[J§(¢)+J§(w§)] eike
’ e| e — (3.318)
| sing+cosE | /;-

133




where J?(wg) was defined in Equation (3.311) and

m/2-¢+E° | ¢-/2-8° ¢+E°-31/2
e -
J1(¢) f sint dt = - f sint dt = f sint at
3n/2-4-£° o+£€-3m/2 ¢-1/2-£%
(3.319)
Lettingu =t + m, J? becomes
orefon/2 pref-n/2 4+£S-m/2
e - R S -
Ji(o)= f sin(uem) QU =- sing dut sinu du-
$-£5+1/2 ¢9-£%+m/2 -EC+m/2
(3.320)

The second integral in Equation (3.320) can be evaluated in closed form

such that [44]

e
e o+E -m/2 - —
ore-m/2 tan [;___1?___1 sing-cost®
] sinu du = wlog — = = wlog el
o tan [ $-E +7/2 sin¢+cosg
- [EE] | Lt
- - (4.321)
Using Equation (3.320) and (3.321), one obtains the following
expression:
- —1/2
- — e . e
I~ 1 1/(2m)J,5(9) | sing+cosE
exp | -7x (J7(8)+0T(W)) | = e 2 o | - (3.322)
- - : Sin¢-cosE

Finally, substituting (3.322) into (3.318), one obtains
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- —1/2

dsw ve'i"“icos&e Zsinae(1+cos¢)
u>"(p,9) =
e Y77k (singS-cos) (14sin£®) (sint®+cos¢)
. eikp
- exp(93(8)/(2m)) 7= (3.323)

which is identical to Equation (3.279).

ODD PROBLEM

In this case, letting ¢'=$g=n/2+§° in Equation (3.16) yields

_ o.-ikpsin(e-£%) _

SW,, 20
($,8,) = ve v exp(1

=
w2
P14
)
R
;5
S’
]
-~
-

£

d
-

A
“o
0< < (3.324)

where 36(¢,$g) is the unperturbed field. Furthermore, Equation (3.212)

becomes
v G?(-kcosw) eikpcos(w'¢)sin w dw
S, ~0
u (p;(b 9¢) =2n1 f . (3.325)
° b o (cosw-sinso) G?(-ksinzo)
I‘w .
The geometrical optics poles wg+ and wg' become
W= w2 - (3.326)
and
W= m/2 + g (3.327)

where 0 < Re(§°)< n/2 and Im(g°)> 0. The above two poles
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are depicted in Figure 3.18. Note that the integrand in (3.325)

still has three poles, namely, Wg+, Q?' and wg. Following the same

procedure as in the even case, the total field uo(p,¢) is given by

4 (058) ~ U1 (0,0) U(8-F1) + ub™(0,9) + ug™(0,8) , O < g <
(3.328)
where
WP (p,4) = vtan(wd) exp(-33(w2)/m) exp(-18% - &) U(s78)
(3.329)
is the reflected field, and
: 172
dsw( ) -ve”'/4 cos(¢/2) [2sing%(sing’-cose)]
u Psd) ~
0 Y2k Zsin(wg/Z) sin¢+cosE’
-1/ (2[5 (9)+32 (W) |~
. e 1 P77 sec ((¢-m/2-£°)/2) T(a;, ag)
- ikp
0 + 0 e
- sec ((¢+n/2+€7)/2) T(a,,a)) , 0<¢<m  (3.330)
P Yo

+
is the odd diffracted field. The constants a; and ag are given by

| 0
ox(m/2+E") 2
aé = 2cos? — | ag = 2sin ((¢-wg)/2) (3.331)

and they satisfy Equation (3.248). Note that T is the composite

transition function which was defined in (3.244).
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As expected, the diffracted field in (3.330) is not the same as the
one given in (3.295). However, assuming that |Im 8o| is large enough so

that Equation (3.317) is true, Equation (3.330) becomes

in/a - — 172
—vie "/ sing 2sing’
udM(p,4) ~ -
Y27k (sing -cos¢) sinE°+cos¢ |
- o112 "
o _ _. _ikp
) ‘ s1n4>-cos€o . oxp %%'(J?(¢)+J$(Wg)) ) e Gcocn,
sin¢+cosE | - — /o
- - (3.332)
As in the even case, it can be shown that
— —1/2
- _ . 0
! ‘ sin¢+cosE ‘
exp | Zn (J7(0)+3(w)) | = exp(95(8)/(2m)] —— s oont | . (3.333)
= - sin¢-cos
Substituting (3.333) into (3.332) yields
. - — 172
ive 1™ I siné ! 2sink I
udN(p,0) ~ - -
Y27k | sinE -cos¢ ’ | sinE +cos¢ I
eikp
rexp(J,(4)/(21)) —, 0 < p < (3.334)
/B .

which is the nonuniform expression obtained in Equation (3.295).
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CHAPTER IV

IMPEDANCE BISECTION PROBLEM
(OBLIQUE INCIDENCE)

A. STATEMENT OF THE PROBLEM

Chapter III was restricted to the case where the fields had no
z-variation; hence, it was a two dimensional problem. In this chapter
the more general case of oblique incidence will be considered., The
geometry of the problem is shown in Figure 2.6. It was shown in Chapter
IT that there are two ways to scalarize this vector problem. In this
chapter, the normal field components Ey and Hy will be used, Recall that
these fields satisfy the scalar Helmholtz differential equation as shown
in Equations (2.36) and (2.37). Furthermore, as indicated in Chapter
II, the normal field components Ey and Hy independently satisfy the

following impedance (or Leontovich) boundary conditions for x<0, y=0:

|3 N

|3y + iks; | E, =0 , x<0,y=0, [z]= (4.1)
I
Ay TkS, | Hy =0 ,  Xx<0,y=0, |zl , (4.2)

where
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O
N
w
~
=
o
[[]

normalized impedance, TM_ polarization
Y . (4.3)

¥
3
o
S~
N
w
]

= normalized admittance, TEy polarization

The subscript " a" refers to the Ey field, while the subscript "h"
refers to the Hy field.

When the region {x>0, y=0, |z|<=} is a PEC, the boundary conditions
are given by Equations (2.32) and (2.33). On the other hand, if a PMC
ocupies the region {x>0, y=0, |z|<=}, the boundary conditions satisfy by
Ey and Hy are given by Equations (2.34) and (2.35), respectively. Thus,
there are four problems that need to be solved. The case when a PEC
ocubies the half-plane {x>0, y=0, |z|<»} will be solved for both
polarizations. The other case, when the PMC ocupies the same half-plane

as the PEC, will be obtained by duality for both Ey and Hy fields.

B. PEC CASE
e
1. ™y polarization (Ey, even problen) -

Let the incident field be equal to

Ei(x,y,z)=E exp[i(k;x-k;y+k;z)] (4.4)

y cy

where Ecy is an arbitrary constant, and the constants kx, ky, and kz are

given by
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kx=-Kcos¢' : ky= Ksing' ; kz=-kcose' i 0<8'<m, 0<¢'<n (4.5)
where

K=K; + iKp= ksin®'= (k; + iky)sin®’ . (4.6)

Substituting Equation (4.5) into (4.4) and using cylindrical

coordinates yields

Ei(x,y,z)=ECy exp[-iKpcos(¢-¢')+ik;z] (4.7)

y

Note that the boundary conditions are not a function of z, and since the

geometry depicted in Figure 2.6 is a two-dimentional geometry, it
follows that all components of the total field Ey’ i.e, E;, E;, E;,
etc., will have the same z-variation. 1In other words, they will have

the common term exp(ik_ z). Consequently, the differential Equation

(2.36) becomes
2 2 '
(v, + K )Ey=0 , y>0, |x] and |z]<e . (4.8)

Following the same procedure as in Chapter III, the total field Ey can
be expressed as
e se ~ ~j

E_(x,y,z)=E. + E +E

y y FE FE , y>0 (4.9)
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where E; is the unperturbed reflected field given by

~

Er
y

JYH,2)] (4.10)

(x,y,z)=Ecy Ra(¢',e',6a) exp[i(kxx+k

where

sing' - 8,/sin@'
¢ a/ (4.11)

Ry(¢',0',6.)= STng™ + 8,/s1n8"

is the Fresnel reflection coefficient for an im
the superscript "e" refers to the even problem.

Since the field E;e(x,y,z) satisfies the same boundary conditions
(Equations (4.1)and (2.32)) and differential equation (except that k is
replaced by K in Equation (4.8)) as the field uZ(x,y) in Chapter III,

it is not necessary to repeat all the analysis for E;e. However, the

-similarities end when the edge conditions satisfied by 3 have to be

y
used, Therefore, it follows that Ey+ and Ey_ satisfy Equation (3.58),
that is
o%€(5)6%(s) = E;%(s,0) + E55(5,006%%(s) , <ty (4.12)

where the common term eikzz has been dropped and
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t_=(Im K)cos¢'= Kycosé'= kpsind'cos¢' (4.13)

r+=(Im K)= Kp= kgsine' . (4.14)

The constants Gae(s) and %€(s) are defined as follows:

| 8
6*(s)= gv RSy (4.15)
) iECyky(l-Ra)
338(s) " ; (4.16)
Von (s+k, )8

where the function B, given by

= (& - s)? (8.17)

is defined in exactly the same way as in Chapter III, except that k has
been replaced by K. Factorizing 63€(s) and decomposing Gie(s)¢ae(s),

one obtains

62(s) = 63°(s)6%%(s) (4.18)
62%(s)0% (s)= DI%(s) + D?®(s) (4.19)
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where Gfe(s) is regular and free of zeros in the lower half s-plane
defined by 1 < Ky, whi]e.Gie(s) is regular and free of zeros in the
upper half s-plane t > -K,, The details of the factorization of Gae(s)
are shown in Appendix D, As shown in Appendix E, the decomposition of
Gie(s)oae(s) can be done by inspection. The functions Die(s) and Dfe(s)

are given by

iE_ k (l-Ra)

cy'y - 1 -
p3%(s) = ; e T - 6i(s) (4.20)
TZm ke (s, ) | G2 (k) _
N | 1Ecyk}(1'Ra) -1 1 —
BUs) = - . (4.21)
TTn ks (s+k ) | 62%(s)  62%(=k,)

where Die(s) is regular in the upper half s-plane t > t_, while Dfe(s)

is regular in the lower half s-plane t < T,. Furthermore, by the same

A

arguments as in Chapter III, Ey+(s,0) is regular in the upper

half s-plane defined by t > t_ and Ey_(s,O) is regular in the lower
half s-plane defined by t < Ty

Substituting Equations (4.18) and (4.19) into (4.12) yields

D3%(s) - E;i(s,O)Gie(s) - E;f(s,O)/Gfe(s) - D2%(s) ,1_<t<r,. (4.22)
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By analytic continuation, both sides of equation (4.22) are equal to a
polynomial P(s) (P(s) is an entire function which is unknown at this.

point) such that

D3%(s) - Ej3(s,0063%(s) = E;2(5,0)/62°(s) = D2%(s) = P(s) for all s
(4.23)

where
P(s)= Co + Cys + Cos2 + ... + Cpsh . (4.24)

In order to obtain unique solutions for é;i and E;?, it is necessary to
determine the unknown coefficients {Ci}?=0‘ In Chapter III, the
coefficients of the polynomial P(s) were determined by examining the
aéymptotic behavior of both sides of equation (3.65). The same
procedure will be followed in this chapter. Using the results of

Chapter III, one obtains

Gie(s) ~ 1 as |s| + = for T> T_ (4.25)
gae

o (s) ~1 as |s| » = for 1< T (4.26)
pae -1

+ (8) ~s as |s| » = for T> T_ (4.27)
pae -1

~(s) ~s as |s| » = for T< T . (4.28)

Thus, the asymptotic behavior of E;i and E;? remains to be determined.

It is shown in Appendix B that the behavior of the transverse components

Ey and Hy near an edge is more singular than that of the tangential
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components E, and H, by a factor of p-l (see Equation (B.6)). It follows

from Equations (A.13) and (A.15) that

é;f(s,o) ~ Gz+(s,0)s as |s| » = for t> T_ (4.29)
Ese ]
y_(s,O) ~ ue_(s,O)s as |s] » = for 1< T, . (4.30)

Substituting Equations (3.66) and (3.67) into (4.29) and (4.30),

respectively, one obtains

é;i(s,O) ~ g0 as |s] + = for 1> T (4.31)

ﬁ;f(s,O) ~ 50 as |s] » = for 1< (4.32)

+ L]

Moreover, substituting (4.25)-(4.32) into (4.22) yields

ae ‘se

D3%(s) - Ey+(s,0)eie(s) ~ 9 as |s| »= for T> T (4.33)

£2(5,0/62%(s) - D2(s)| ~ " as |s| » = for T <, . (4.34)

It follows from (4,23) that

P(s) ~ sO as |s| » = . (4.35)

Thus, at most the polynomial P(s) can be a constant such that
P(s) = C; . (4.36)
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It will be shown later that indeed, P(s) has to be a nonzero constant in
order to obtain solutions that satisfy the radiation condition,
Substituting Equation (4.36) into (4.23) and solving for E;E(S,O)

and E;f(s,o), one obtains

;ﬁ(s 0) = (D3°(s) - €5)/G2°%(s) (4.37)
€;f(s,0) = (€5 + D%%(5))62%(s) (4.38)

where the unknown constant Cg has to be determined. Combining Equations

(4.37) and (4.38), the expression for E;e becomes

ESe(x,y,2)=[ES(s,0)+E58(s,0)] exp(ik.z +iBy), y»0, T <t<t, .(4.39)
y Dy’ y+ s y_ s p b4 .Y ’ .y ? - + ° °

Substituting Equations (4.20), (4.21), (4.37) and (4.38) into (4.39)

yields

- k -R - <1<
y(l ) T_<1<T

gse_ Gae(s) cy ks ct +

o1 (By+k, Z) , y>0 .

8 /??‘(s+k;>efe(-k;) (4.40)

Finally, taking the inverse Fourier transform of (4.40), one gets

1 o+ia ~se
— | Ey(s,y,z)exp(-isx) ds (4.41)
T -wtia

se
B (x,y,2)=

where the path of integration is shown in Figure 3.4. Before the
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constant C§ is determined, the general form of the So]ution for the TEy

polarization will also be obtained next.
2. TEy polarization (H;, odd problem)

In this case, the incident field is

y

H'I

s y + kzz)) , y»0 (4.42)

L ]
(x,y,2)= Hcy exp(1(kxx -k

where HC is an arbitrary constant. The total field Hy satisfies the

Y
boundary conditions given in Equations (4.2) and (2.33), and the

differential equation (2.37).

Since Hg(x,y,z) satisfies the same boundary conditions and

differential equation as the odd field uo(x,y) in Chapter III, one can
use the results of Chapter III in this section. On the other hand, one
notes that uo(x,y) and H;(x,y,z) satisfy different edge conditons at the
origin x=y=0, and as shown in the previous section, this difference has
an important effect in the final solution for ﬁ;(s,y,z).

| As in Chapter III, let H; be equal to

ur

H (x,y,z) , y»0 (4.43)

Ho _uSo + i, +
y(X.y,Z)H (X,y,2) Hy(x,y,Z) y

y

where H;(x,y,z) is the unperturbed reflected field given by

~, 4 ] )
H'(x,y,2)=H__ R _(¢',8',8.) exp(i(k x+k y+k_z)) (4.44)
y cy 'h h x" Tyl Nz

in which
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sin¢e' - sh/sine'

R.(¢',0',8 )= 4.45
h " Sing' + 8, /5ine! (4.45)

is the Fresnel reflection coefficient for an impedance wall,

The scattered field H§°(x

»YsZ) can be obtained by the same approach
used in Chapter III, Without repeating the analysis, it follows from

(3.131) that the Wiener-Hopf equation is given by

-H>%(s,0)
i0M°(s) + a"°(s) ﬁyi°(s,0) = ——— - iM(s) , 1_ << T, (4.46)
iG_(s)

where t_ and t_were defined in (4.13) and (4,14), respectively. It

follows from Equations (3.129) and (3.130) that DEO and D?o are given by

Hcy1(1+Rh) - 3 —

ho ho
D = ; - - k8.6 4,47)
L (s+k,) | 8"(k ) n (S)__ (
D(s) o ] 1 — (4.48)
s) = n - : .
) VZn (s+k,) _FTO(S) G?O(-kxx_
and
6"%(s) = 1/(s + k§,) = GE°(s) 6"0(s) . (4.49)

The expressions for Gﬁo(s) and Gio(s) are given in Appendix D, and the
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al
notation Hyio(s,o) means

~S0
~'so d Hy+(5;,Y) _
Hy+ (s,0)= =gy~ at y=0 . (4.50)
Since all the functions in Equation (4.46) have a common region of
regularity (the strip defined by T, < Tt < t_), one concludes (by

analytic continuation) that both sides of (4.46) are equal to an entire

function D(s) which happens to be a polynomial in s such that

-H%%(s,0)
y for all

i0}°(s) + 61°(s) ﬁ;io(5’0)= - i"(s)=D(s) s (4.51)

5ch0, oy
G A3y

where

D(s)=d, + dys + dps? + ... + dns" . (4.52)

Note that all the coefficients {dj} are unknown at this point in the
analysis, Moreover, as in the TMy polarization, the asymptotic behavior
of all the functions in Equation (4.51) have to be determined. It was

shown in Chapter III that

_1/2 :
Gto(s) ~S as |s| »» for 1> T_ (4.53)
_1/2
Gﬁo(s) ~s as  |s| » = for T< T, (4.54)
ho -1
D, (s) ~s as |s| + = for T> T_ (4.55)
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_1/2
o(s) ~5 as |s| +» for T< T . (4.56)

o ,

By the same arguments as in the case of TMy polarization, the asymptotic

al -~
behavior of Hyio(s,o) and H;?(S,O) can be obtained as follows:

150 s _
Hy_(s,O) ~u,_(s,0)s as |s] » » for T < T, (4.57)
ﬁyio(s,O) ~ aoi(s,O)s as |s| + = for > T . (4.58)

Substituting Equations (3.144) and (3.145) into (4.57) and (4.58),

respectively, yields
H;?(S,O) ~ 50 as |s] » = for T< T, (4.59)
AISO N /2 -
Hys (550) st as |s| » = for T> T, (4.60)
Using Equations (4.53)-(4.60) in (4.51), one obtains
iD"%(s) + 1 5%s,0)6™0(s)| ~ sO as |s| » = for T> T (4.61)
iD, (s i (55006, _ .
iH;‘j(s,o)/e’]°(s) - iD"(s)| ~ s1/2 as |s| » = for T < T, . (4.62)

By the extended form of Liouville's theorem [32], the polynomial D(s) is

of degree less than or equal to the integral part of min(0,1/2).
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That is,

D(s) = dp (4.63)

0

where dh is still an unknown constant,

Solving for Q;S(S,O) in (4.51), one obtains

ﬁ;?(s,o) = -iGT°(S)[dg + 1 0M(s)) . (4.64)

The expression for ﬁio(s,O) can be obtained from (3.148) by replacing v

by HCy such that

-iH_ (1+R.)
iso cy h
V2n (s+k,)

| +(s,0) =

. (4.65)

It follows from (3.113) that ﬁ;°(s,y,z) is given by
P "~ A 1
HYO(s,y,2)=[H2(5,00+H32(5,0)] exp(ik,z +iBy), y>0 ,7_ct<t, .(4.66)

Substituting Equations (4.48), (4.64) and (4.65) into (4.66) yields

T <1<7T

Hcy (14Rp) ' -
cy ST dy |o1(By+k,2) | §50

+

= 1 ) r
y TT (s )60 (k)

(4.67)

Finally, taking the inverse Fourier transform of (4.67), one obtains
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so 1 oo+ib ~s0 y>0 (4.68)
H yZ)= H>"(s,y,z)exp(-isx) ds , .68
(XY z) . {w+ib y (55Y52) p( ) T_<T<T4

where the path of integration is shown in Figure 3.4.

3. Determination of the constants C: and dﬁ

In order to determine the unknown constants Ci and dg, it is
necessary to solve for the other field components, i.e., Ex, EZ, H , H
in terms of the normal field components Ey and Hy. It is shown in

Appendix I that the following relations hold; namely,

] A -~
1kzk Hy(s,y,z) + 1YosB Ey(s,y,z)

>

E (s,y,z) = 1 (4.69)
MERS 2. .2
Y (s™ +k, )
-~ ] ~
knys Hy(s,y,z) - kB Ey(s,y,z)
E (S,y’z) = s - (4.70)
: (s% + k)
z
-1k _k Ey(s,y,z) + in,s8 Hy(s,y,Z)
H (s,y,z) = e (4.71)
X in (s” + k,)
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A [] -~
~kY s Ey(s,y,z) - kB H (s,y,z)

y
H (s,y,2) = . (4.72)
p4 (SZ + k'2)
z
Note that all the four expressions above have two poles at
]

s = ikz = -ikcos®’ . 0<0' <+ (4.73)
and

s = -ikz = ikcos9' . 0<8' < . (4.74)

Taking the inverse Fourier transform of Equations (4.69)-(4.72), one

gets

S 1 wtic g y>0 ( )
By (x,y,2)= J E. (s,y,z)exp(-isx) ds , ¢_<t<t 4.75
X ’ /75 -etic ¥ T-STeT

S 1 otic ~s y>0
E, (x,y,2)= ] E, (s,y,z)exp(-isx) ds , y_cr<r, (4.76)

T =ot+]C

S 1 wtic ng y>0 ( )
Ho (x,y,z)= H (s,y,z)exp(-isx) ds , <1< 4,77
X y P {wﬂ'c x \S» T_<T<T4

s 1 +ic g y>0
Ho (x,y,z)= J H (s,y,z)exp(-isx) ds , ¢_ct<r, o (4.78)
z ’ V7?7 -wtic z -
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The next step in the analysis is to examine the poles at Fikcoso'
and determine what kind of fields they contribute, and whether or not
these fields are physically possible. Let sy and sp, shown in Figure

(4.1), be defined as follows:

s] = ik|cos8'| (4.79)

]

sp = -ik|cose'| . (4.80)

For x<0, the path of integration in Equations (4.75)-(4.78) can be

closed in the upper s-plane as depicted in Figure 4,1 such that

Q+-ic . . . X<O
J 9(s) e=1X ds + [ g(s) e-1SX ds =£pg(s) e-15X ds , y>0 (4.81)
-+ I

where g(s) represents any of the fields in Equations (4.69)-(4.72). Note
that for x<0, only the pole s will be captured. Applying Cauchy's

Residue Theorem in (4.81) yields an expression of the form

exp(iky-is1x) = exp(ikyy+ika|cos®’|x)exp(-kay+ky|cos®'[x) | x«0

(4.82)

where k was defined in Equation (1.7). At s=sj or sp, the function B is

equal to

2 2 2 172
B(s=s) or s,) = (K + k cos 6') = ky + iko=k (4.83)

on the top Riemann sheet (Img > 0),
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Figure 4,1, Integration paths on top Riemann sheet: Im (8) >0.
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The expression in (4.82) does not satisfy the radiation condition
since it represents a wave which propagates towards the origin
(x=0=y=z). Likewise, for x > 0, the path of integration in Equations
(4.75)-(4.78) can be closed in the lower s-plane as illustrated in

Figure 4,1 such that

wotiC . ) x>0
J g(s) e-1SX ds + | g(s) e=1SX ds =<g(s) e-1SX ds , y>0 . (4.84)
-otiC T'»

As shown in Figure 4.1, only the pole s, is captured for x > 0., Applying
Cauchy's Residue Theorem in (4.84), one obtains an expression which is
broportiona] to

exp(iky-isox) = exp(ik,y-iky|cos8'|x)exp(-koy-ky|cose'|x), x>0.

‘ (4.85)
This expression also represents a wave which propagates towards the
origin in violation of the radiation condition,

Thus, the poles s and sp, which contribute waves that do not
satisfy the radiation condition, are not valid poles. Consequently, the
numerators of Equations (4.69)-(4.72) should be equal to zero when s is
equal to sy or sp. It can be shown that by setting the numerators of

(4.69)-(4.72) equal to zero at s=s; and sp, one obtains only two

equations:

N, Hy(ikz) - Ey(ikz) =0 (4.86)
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A ] A ¢ ’
ing Hy(-1kz) + Ey(—1kz) =0 . (4.87)

Substituting (4.40) and (4.67) into (4.86) and (4.87) yields

ae,. *. |7 TEc Ky (1-R)) S
6. (ik,) _ 80| =
. ' ' ae ]
T (k)62 (K )k ~
ho,.. " Hey (1+Rp) o
nG_ (ik,) +  dy (4.88)
] . ] ho ]
3 Von (kx+1kz)G_ (k) B
ho, .. '\| Hey (1+Rp) o |
n,G_ (-ik,) _ + dp | =
kl ' ho ' |
_ 2n ( w1k, )6_" (k) _
—iE_ k (1-R)) =
ae, .. ° ! cy'y a e
-6_ (-ik;) - 8,C, . (4.89)

VT ik 4k )68 (k) |

The last two equations can be used to determine the two constants Cg

and dz such that
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TEC kg (1-Ry )k, ) ik, k
Ce = 1 ' 1 1 '
2. .'2 2, ,'2 =
R (S N [t I T (k5 k" ks, (B |

- ! z ho ., 'y —
iE. K, (1-R)[A Hoy M2 (4R )6 (k) ‘

.l cy'y cel , oo (4.90)
ae, ,' ho, ,' l
l__ 62%(-k, )k 6" (k) _
] . 1
'Hcy(1+Rh)kx N ik,
d =
h 2. 72 \oho, . 2. 2 \i&
I (K, k)60 (k) 7 (k5 kS ) (B
= Hey(14R,) K | 2Ecyk;(1-Ra)Gae(ik;)‘—
. + (4.91)
S ikn 62%(-k ) ~
where
_ | -
_ 6" (ik,) 628 (ik,) ‘
Ace = (4.92)
] ]
6M0(-ik,)  6%(-ik,)
_ | -
i 6" (ik,) 628 (ik,) I
Bce = . (4.93)

ho, .,' ae, . '
-G (-1kz) G_ (-1kz)

Note that the two bars above A and B denote a matrix. Furthermore, |R|

and |§| are the determinants of the matrices R and é, respectively.
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Evaluating Equations (4.15) and (4.49) at s= ¥ik,, one gets

[} [} 1
6% (ik,) = 6%(-ik,) = T 5 (4.94)
ho,.,*\ _ ho, . ' 1L
G (1kz) =G (-1kz) =T+ &)k . (4.95)

]
The functions G2 (¥ik

]
,) and G"(ik ) will be defined in section D,

It is easy to show that C: is proportional to k-l, while dg is

1/72

proportional to k™ °/“, Furthermore, note that both C: and dg are

functions of HC and Ecy' This implies that if the incident wave is TE

Yy
or TMy polarized, it will excite a diffracted field that has both

y

LT a LI | L H L LRled

polarizations. In other words, there is coupling between the TEy and

TMy polarizations, which was not the case in Chapter III where the

direction of propagation of the incident field was normal to the edge

(z-axis). In order to show that the TEy and TMy polarizations decoupled
]

for the case of normal incidence, let kz=0 (6'=w/2) in Equations (4.90)

and (4.91) such that

1E K, (1R)) |
c® - . . k_=0 (4.96)
ae ’ Z *
VZ2n kx G (-kx)kGa
d? = k_=0 . (4.97)
h ' ho ' ’ z
V2w kX G_ (-kx)
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0

h is only

As expected, the constant Cg is only a function of Ecy’ while d

a function of H_ .
cy
Following the work in Chapter III, let the constant & be defined as

done earlier; i.e.,

0 <Re(E)< w/2
cosg = cos(E, + igj) = §/sind’ R 0<e' <u/2 o (4.98)

Thus, for the TMy polarization (Ey)

cosEd= §5/sin8' = Zg/(nysind') (4.99)
and for the TEy polarization (Hy)

costN= §y/sin8' = ng/(Zgsin®') . (4.100)
C. PMC CASE

)
1. TMy Polarization (Ey, odd problem)

In this case, the field E; satisfies the same type of boundary
conditions as H; in section B, Thus, the solution for E; can be simply

obtained by duality [20]; i.e.,

A~

c0 a h _ 5o
Ey(ECy’Hcy’E »E ,TIO,YO) = H (H "E

h
y cy CY’E

a
& 5 Ygs M) . (4.101)
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Substituting (4.67) into (4.101) yields

T <17

a Ecy (14Ry) . ' -
EC_G(s)| Y T v Co |oi(By+k,2) | Tyao T
i '\pa0, '
_ 2w (s*k, )6 (k) _ (4.102)
The constant Cg is given by
| ] . ]
-Ecy(1+Ra)kx 1kZ
c? = ¥
a '2. .'2 (.20, ' '2, .'2 1§
T (k5 kS )20 (k) 2 (k,+ k" )18,
E(1+R)IK | 2H_n k. (1-R )G"€(ik.)
- . n ) iK'y —
(o a’'"co cy o h
. y - Yoy z (4.103)
ao, ,' .. he, '
_ G_ (-kx) ikG_ ('kx) _
where
_ ' -
. 62°(ik,)  G"®(ik,) -
Reo = . (4.104)
ao, . ' he, ..'
G_ (-1kz) G_ (-1kz)
— . -
_ 62°(ik,) 6" (ik,)
Beo = (4.105)

ao, .,' he, ., '
-G_ (-1kz) G_ (-1kz)
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and

' ' 1 .
Ghe('ikz) - Ghe(_.ikz) = —mr . (4.106)

The functions Gio(iikz) and G?e(zikz) will be defined in section D.

1/2

Furthermore, the constant Cg is proportional to k™ which is not

surprising, since it was derived from dg.

Taking the inverse Fourier transform of (4.102), one obtains

< 1 f~+ib ~so , y>0
E2Y(x,y,2)= E2"(s,y,z)exp(-isx) ds , r_ <1< (4.107)
y 7T erib Y i

where the path of integration is depicted in Figure 3.4. Finally, the

total field E; can be expressed as follows:

~

Eo - i r SO . .108
y(x,y,Z) Ey(x,y,Z) + Ey(x,y,Z) + Ey (x,y,2) , y»0 (4.108)

e
2. TEy Polarization (Hy, even problem)

For this polarization, the field H; satisfies similar boundary
e
conditions as Ey in section B. As in the odd TMy case, the solution for

Hy can be obtained by duality such that

ﬁe(H £ h a “e a h
y Cy’- Cy’g ’E Qno,Yo) = Ey(ECy’HCy’g ,E ’Yo’no) ° (4.109)
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Substituting (4.40) into (4.109) yields

'
R — iH., k,(1-R.) 5 : T_<t<T,
Ree_a(s)| Y _kpde |1 (By+k,2) | Tyao T
] ]
B VT (s )6 (k) _ (4.110)
The constant dﬁ, which is proportional to k'l, is given by
. .l 1 . ]
TH Ky (1-Ry Dk, ik, k
€ = v
= l2 I2 he ] l2 l2 -
/n (kz + Kk )G_ (-kx)ksh /2 (kZ +k, )kGhIBCOI
[} - ao [}
I~ iH_ k. (1-R )IA_ | E_ Y 2(04R Y6 (ik_) —1
cy y'" 'n’i"co! cy 0" a ‘itz
- (4.111)
he, .' ao, ,'
_ G_ (-kx)k GS (-kx) _
where
62°(ik.) = 62°(-ik.) = 1 (4.112)
1 z) = -1 z) =TT+ 350k . .

The scattered field H;e is obtained by taking the inverse Fourier

transform of (4,110), that is

1 ot+ia ., y>0

I Hje(s,y,z)exp(-isx) ds | r_<tcr, (4.113)
® -ot+la

Se
H =
y (x,y,2)

where the path of integration in depicted in Figure 3.4. The last step

in this section is to determine the total field H; which»can be
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obtained from Equation (4,43) as follows:
K (x,y,2) = Hj,(x,y,Z) + ﬁ;(x,y,Z) + H8(x,y,2) , ¥>0 (4.114)

Yy

where H; and ﬁ; are given in Equations (4.42) and (4.44), respectively.

D. ASYMPTOTIC ANALYSIS

As in Chapter III, before the asymptotic analysis is performed, it

is necessary to map from the s-domain to the periodic w-domain where the

saddle point method can be applied conveniently, Thus, define w such

that

s = -Kcosw . , (4.115)
Substituting (4.115) into (4.17) yields
B = Ksinw (4.116)

where it is assumed that K=Kj=kisin@' is real (K2=0, lossless medium).
Equations (4.115) and (4.116) are the same as Equations (3.161) and

(3.162), respectively, except that k has been replaced by K.

1, PEC Case, ™

e
y Polarization (Ey, even problem)

Substituting Equations (4.115), (4.116), (3.163), and (4.5) into
(4.41), one gets
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-
ik “Ecy sing' (1-R
e'Kz? / Gfe(-Kcosw) <y ¢ (1-Ra)

E2%(0,4,2) =
y L PS (cosw + cos¢')G§e(Kcos¢')
| - 0< ¢ <m
- /75 ke 8 |elKeeos(W-0)g, ¢ (4.117)

0< 8' <n

where the path of integration is shown in Figure (3.9). Note that the
1ntegrand‘in Equation (4.117) has the same poles as the integrand in
Equation (3.164) which are also shown in Figure (3.9).

At this point in the analysis, it is convenient to write the
expressions for the functions 6® and 6°. Substituting Equations (4.116)
and (4.98) into (4.15) and (4.49) one obtains an expression for 6E
identical to Equation (3.186), while the expression for G% is the same
as Equation (3.221), except that k is replaced by K. It follows that
65(-Kcosw) is given by (3.187), while G°(-Kcosw) is given by (3.188).

Likewise, the expressions for Gi(-Kcosw) and G?(-Kcosw) are given by

Equations (3.222) and (3.223), respectively, except that k is replaced

h h

by K. The superscript a or h is attached to the functions Ga, G, Gg, G,
when £ = £2 (TMy) or g = gh (TEy), respectively,
Following the same procedure as in Chapter III, the total field E;

can be expressed as follows:
e e re SW de
Ey(p,¢,2)-Ey(p,¢,Z) + Ey (p,¢,Z) + Eye(p,¢,2) + E_Y (D,(b,Z) (4.118)
where the incident field E; is given in Equation (4.7) and
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0<(¢,0')<m

re - e 1 o - ] kI ]
Ey (0, 6,2) Ecy AS(4") expli(-Kpcos (¢+4')+k )] , 0< 8" <n (4.119)

is the reflected field where Az is given by

-1 for ¢ + ¢'<m —
A(¢') = e . (4.120)
Ry(¢') for ¢+ ¢'>m

ae

The contribution from the pole We (pole of Gfe(-Kcosw)), which was

defined in Equation (3.167), is the surface wave field E;:(p,¢,2). This

field is given by the following expression:

1'kzz -
-e -
)17 exp(-33° (w2%)/(2m)) U(e-F%)

ESW( p,¢,Z)=
ye (sin &

|Ec cosgae — —

y
| I exp(-J?e(¢')/(2w)) sec((wge+¢')/2)+sec((w:e-¢')/2)
sine'+co

B l

1/2
. sinEae - cosé' - /7T ks, CE /2 cos(wae/Z)
a ‘a = 3

-exp(iK(xcosw:e + ysinw:e)) | (4.121)
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where $ge was defined in Equation (3.203). Note that the superscript e

has been added to & and &, When this solution is generalized to treat

dielectric/ferrite materials, 62 in general will not be equal to Gg.
The last component of the total field E; is the diffracted field

Eje which is given by the following integral:

e1kzz | eiKpcos(w—¢)

ae
E9(p,0,2)= = exp(-Jy~ (w)/(2m))
y s 9P 27 Cspp

sinw + cosEae
|~ -
sec((w+¢')/2) + sec((w-4')/2) -(singae- cosw)

i/2
L]

- 172
.iEcy(l - R:)/Z (sinsae- cos¢') exp(-Jge(¢')/(2w))

+ /8x ksgcj (cosw+cos¢')
4icos(4'/2) _

dw . (4.122)

For large Kp, the integral in (4.122) can be evaluated using the

: de
saddle point method. The expression for Ey becomes
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-e'/% exp(-03%(4)/(2m)

9 (0,8,2) = (sing?®- cos¢)

VZiko~ (sing + cosg?€)

sec((¢+¢')/2)F(-KLa*) + sec((¢-4')/2)F(-KLa")

- 1/2
.iECy(l - R:)/z (sing®€- cos¢') exp(—J?e(¢')/(2ﬂ))

+ /3?‘k6§€§ (cos¢+coss') (4.123)
d4icos(4'/2) _

.where L=p for plane wave incidence, and Cg has been defined in Equation

(4.90).

] [}
The functions Gf(iikz) and Gg(iikz) which appear in Equations
(4.92)-(4.93) and (4.104)-(4.105) are evaluated next, Using the results

of Appendix F, it can be shown that S1=1k, is mapped to

W= /2 - isinh'l(cote') (4.124)

in the periodic w-domain., Substituting (4.124) into (3.187), (3.188),
(3.222) and (3.223) yields

e'i(“/4'el/Z)exp(se(-?)/(Zn))

/2 (4,125)

e, ..'
G_(-]kz) = . . e 1
(sine'sing™- icoss')
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' ol (1/4-67/2) exp(aé(¥)/(2ﬂ))

6 (ik.) = T/
-2 (sin8'sing®+ icose')
O exp(J°(7)/(2))

4 = 172

z (k(sine'sing%+ icose'))
0, exp(J%(-7)/(27))
G_(-ik,) = . . 0 . 172
(k(sine'sing - icosd'))
where
T= -isinh'l(cote') , 0<o' <
Te,o0 T+Ee’o
J7 (1) = f t/sint dt
+£€2 Oy

2. PEC Case, TEy Polarization (H;, odd problem)

The integral expression for H3C in the w-domain is given by

Y

s, 0
e1kzz / GEO(-Kcosw)sinw

0
—Hcy ( 1+Rh )

(4.126)

(4.127)

(4.128)

(4.129)

(4.130)

)
Hy (e 452) =~ 0
- )
+ /or Kdg oiKocos (w-0) 4, 0 ¢ <

0< 8' <n
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(4.131)




where the contour of integration FS is depicted in Figure 3.9. It is
important to note that the integrand in (4.131) has the same poles
(shown in Figure 3.9) as the integrand in Equation (3.212). Thus, the
results of Chapter III can be used here to solve for the field KSO,

The scattered field H;O is represented, after deforming the contour
FS to the steepest descend path CSPD’ as the sum of an integral along
CSDP and the contributions from the poles swept during the deformation.

The total field H; can then be obtained by adding H;o to the unperturbed

field. The expression for H; becomes

0 m ro Sw do
Hy(p,¢,2) Hy(p,¢,2) + Hy (p,6,2) + Hyo(o,¢,2) + Hy (prb,z) (4.132)

where H; is the incident field defined in Equation (4.42) and

ro 0, .. , ' 0<(¢,¢')<m
Hy"(psd,2) = Hoy Ap(e") expli(-Kocos(o+e')+k,2)]1,  0< @' <n
(4.133)
is the reflected field where Aﬁ is given by
o —-1 for ¢+ ¢'<n 7
A (9') = | . (4.134)

__Rz(¢‘) for ¢+ ¢'>n

The surface wave field H;g is a contribution of wzo which is a pole of
ho

G_"(-Kcosw) and was defined in Equation (3.215). Note that the pole w!o
is captured only if Eho satisfies Equation (3.235). The expression for
SW . .
Hyo is as follows:
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e1'k;z > ) .
SW - ho,. ho ~ho
= - U( ¢-

cy -~ -

~H
I ho exp(-J2°(¢')/(2w)) sec((w2°-¢')/2)-sec((w2°+¢')/2)

sin¢'+cosE

- / -
1/2
-cos(¢'/2)cos(w2°/2) (sinsho -cos¢') 4 VZaK dg sinw2°

-exp(iK[xcosto + ysinwgo)) (4.135)

where the angle $:° has been defined in Equation (3.234).

The integral along Cg which is the diffracted field Hy®, is
given by
* . - ( - N
do ek? | e 1Kpcosiv ¢) exp(-J?o(w)/(Zn)J co(w/2)

sec((w-4')/2) - sec((w+4')/2))

172
-(sinsho- cosw)

- 1/2
|Hcy(l + Rg) (sinsho- cos¢') exp(-J?°(¢')/(2w))

- V2K dz (cosw + cos¢') |dw . (4.136)

For large Kp, the integral along CSDP is asymptotic to a term
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containing the value of the integrand of (4.136) at the saddle point

such that
_e1n/4 exp(-J?°(¢)/(2n)) ) Y2 (ke + K'2)
Hdo(o,¢,2) = o (sing"®- coss) ol (Ko + k2
y V2mkp (sin¢ + cosg )

sec((9-¢')/2)F(-KLa-) - sec((¢+o')/2)F(-KLa*)

cos(4/2)
sin($7/2)

'._
.|HCy

2

(1 + Rz)/Z (sineho- cos¢')1/ exp(-Jqo(¢')/(2"))

- /27K/2 dﬂ (cos¢ + cos¢')‘ . (4.137)

3. PMC Case, TMy Polarization (E;, odd problem)

As in Section C, the total field E; can be obtained from H; by

duality. It follows from Equation (4.101) and (4.132) that

0 i ro SW . do
Ey(o,¢,2)—Ey(p,¢,2) + Ey (p,0,z) + Eyo(p,¢,2) + Ey (psd,z) (4.138)

where

' 0<(¢,0"')<m

1 E;o(p,¢,z) = Ecy Ag(¢') exp[i(-Kpco$(¢+¢')+kzZ)] » 0< ' <n (4.139)

is the reflected field and Aj is given by
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o —-1 for ¢ + ¢'<w —
AL(8') = ‘ 4,140
a Rg(¢') for ¢ + ¢'>r ( )

The surface wave field E;: can also be obtained from (4.135) by duality.

Substituting (4.135) into (4.101), one obtains

k2
SwW _ a0, ao ~a0
Eo(ps#:2)= (sin 30,17 exp(-d7 (wg)/(2m)) U(¢-¢c")
I_ EC:y' . e ]
| 20 exp(-Jg°(¢')/(2n))|sec((w:°-¢')/2)-sec((w:°+¢')/2)
sin¢'+cosg |

' 1/2
-cos(¢'/2)cos(w:°/2) (sinsao - cos¢') 4+ V2K Cg sinwgo

cexp(iK(xcosw ® + ysinw®)) (4.141)
s s

Finally, the diffracted field Ejo is given by (for large Kp)
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'™ exp(- Ja° )/(27))

E;O(p,¢,2) = (sing?%- cos¢)

1/2 ol (Ko + k,2)
VZiks (sin¢ + cosg20)

|
ieC((¢-¢')/2)F(-KLa') - sec((¢+¢')/2)F(—KLa+_)- 2?:(2/2))

- 1/2
.IEcy(l + R2)/2 (sing®- cosg') " exp(-33°(s')/(2n))

- /7Z5K/2 Cg (cos¢ + cos¢')| . (4.142)

4, PMC Case, TEy Polarization (H;, even problem)

As in the previous section, the total field H; can be simply

obtained by duality such that

e i re SW de
Hy(p,¢,z)-Hy(p,¢,Z) + H_Y (p,¢,Z) + Hye(pa¢’z) + Hy (994”2) (40143)
where
r 0<(¢,9')<n

72 (08,2) = e, AZ(8") expli (Kecos (#48)4,2)] 5 0c o+ <x (4.144)

e -1 for ¢ +¢'<m 7
A (8') = o (4.145)
Rh(d’.) for ¢ + ¢'>m
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_eikzz o
SW he, he ~he
e (0s:2)= "7 exp(-01°(wa)/(2m)) U(e-33°)

he
Hcy cos & -

. he exp(-qu(¢')/(2u))|sec((wge+¢')/2)+sec((wge-¢')/2)
sin¢g'+cosg |

— —

1

/2
-(sinzhe - cos¢') - ivln k&ﬁ dz /?'cos(w:e/Z)

-exp(iK(xcosw:e + ysinwge)) (4.146)

! ™% exp(-aN®(4)/(2m))
(sin&he- cos ¢)

1/2 '
H‘se(p,q),Z) = he 81 (Kp * kZZ)
VZiko  (sin¢ + cosg'©)

l
sec((¢+4')/2)F(-KLa*) + sec((¢-¢')/2)F(-KLa")

_' 1/2
.'Hcy(l - Rﬁ)/z (sinEhe- cos¢') exp(-J?e(¢')/(2n))

+ /Ir ksﬁ dﬁ (cose+cosé') . (4.147)
4icos(¢'/2) _

In the next section, the problem of surface wave excitation will
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be considered. It will be helpful if the constants C® 2’ dﬁ, C° and dg

are rewritten in terms of ¢' and 8'. Thus, sustituting (4.5) and (4.6)

into (4.90), (4.91), (4.103) and (4.111) yields

ae_. . . A = =
Ecy 2cosg sin8'sing'(sind'cos¢' + icose'|A_ 1/]B 1)

e .
C” =
a 1k6 Y2 (s1n 8'cos ¢ +Cos 21 )G (Kcos¢’)(sin¢'+cossae)

2no H 251n¢'cose'Gh°(

-ikcos®'
. cy cos@')

J??iksg(sinze'cosz¢'+cosze')GTO(Kcos¢')(sin¢'+cosgh°)lécel

(4.148)

Hcyzsin¢'[sine'cos¢' - icose'[A_ |/[B )

>0
]

2 ho

Vo k(sinze'cosz¢f+cos 8')G_" (Kcos¢' )(sin¢'+cos€ho)

ZECyZCOSEaesine'cose'sin¢'Gae(-ikcose')

V2n kno(sinze'cosz¢'+cosze')Gfe(Kcos¢')(sin¢'+COSEae)IBcel

(4.149)

Ecy251n¢'[sine'cos¢' - icos8'|A_ /B )

C =
a /2 k(sinze'cosz¢'+cosze')Gfo(Kcos¢')(sin¢'+cos£a°)

ZnOquzcosghesine'cose'sin¢'Ghe(-1kcose')

. 2. 2., =
Y2m k(sin“8'cos“¢ +c0526')GTe(Kcos¢')(Sin¢'+cosihe)|Bco|

(4.150)
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he . i ctfeinal ' . 1R =
Hey 2c0sE "sind'sing (sine'cos¢' + icose'|A  [/]B . |)

1k6 2n (s1n 8'cos ¢ +cosZe’ )G (Kcos¢')(sin¢'+cos£he)

s a0 10d0y . '
2Y0 ECy 2sin¢'cos8'G " (~ikcose')

/??iksﬁ(sinze'cosz¢'+cosze')Gfo(Kcos¢')(sin¢'+cosza°)IECOI

(4.151)

E. SURFACE WAVE EXCITATION

The surface wave excitation problem will be solved following the

I:

w

procedure of Section
analytic continuation. It was shown in Section F.3 that the Brewster
angle $b is given by Equation (3.299). The unperturbed incident surface
wave field (TMy or TE ) can be obtained by substituting (3.299) into

(4.7) or (4.42). One obtains an expression (TMy or TE ) which is

proportional to

exp(-iKpcos(¢-$b)) = exp(-iKycosg) exp(iKxsing) , y>0 . (4.152)
Recall that (see Equation (4.98))

Kcosg = k& = k(8§p + i87) , (4.153)

it follows from (4.152) and (4.153) that Equation (4.152) will be

bounded as y + » , if and only if
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§; <0 (4.158)

which is the same result obtained in Chapter III., For the TMy

polarization, Equation (4.154) implies that

Im(Zg) = Xg < O . (4.155)

On the other hand, for the TEy polarization (4,154) implies that

Im(Zg) = Xg > O . (4.156)

Therefore, for a given surface impedance with nonzero reactance (Xg#0),

the surface wave field can have only one polarization,

1, PEC Case

Subtituting Equation (3.299) into (4.117) and (4.131) yields

- E sinwae
. -
se e1kzZ | Gfe(-Kcosw) cy s
E (O,¢,Z) = 2mi
y ™ rﬁ (cosw + coswze)Gfe(Kcoswge)
| - 0< ¢ <m
- /2% k8.C, eikocos(w-¢)y, ¢ (4,157)
0< 8' <m

for ¢' = $ge = 2n - w:e, and
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so ek f GEO(-Kcosw)sinw
Hy (p,(b,Z) = 2."1

_HC‘y

0 ho,~ho ho
L _}cosw+cosws )G_ (KcoswS )
K - 0< ¢ <
+ /7% Kdp o1Kpcos(w-9) g, ? (4.158)

0< 8' <=« .

v _ ~ho _ ho
for ¢' = ¢b = 27 - we

For Xg<0, the unperturbed incident surface wave field is

g1swW,

A ae ae
Ele (x,¥,2) = ECy exp(1K(ys*qu - XcosW, }) exp(ik,z) (4.159)
~a a
where ¢be = 21 - w€ and
S .
isw
H = . .160
Vo 0 (4.160)

Using the same method of analysis as in Section F.3 of Chapter III, the

total field E; can be expressed as follows:

ES(x,y,2) = Epo"(x,y,2)U(8-055) + E2"(x,y,2) + Ege"(0:4:2) (4.161)

ye

where E;:w and ESZW are the reflected and diffracted surface wave
fields, respectively. The fields E;Zw and Egzw can be expressed as
follows:
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ae, ae ~ae
E;Zw(x,y,z) = Ecy(l + coswge)/coswge exp(-J1 (wS )/n) U(e - ¢S.)

3@ _: (il ae | . m oy
2cosw, sin®'(sin6'cosw,~ + icos® |Acel/1Be!) ‘

.1 - s
(cosze' + sinze'coszwge) _J
-exp(iK(xcosw:e + ysinw:e)] exp (ik,z) (4.162)

Ee, e /% exp(-038(8)/(2m)) exp(-028(w3®)/(2n))

ye /2R 2(sine - sinwl®

. sec((¢+w:e)/2)T(a;e,a;e) + sec((¢-wge)/2)T(a;e,a

(cos¢ + cosw?®)sine'(sin8'coswd® + icose'lﬂ |/|§ |
1 - S S ce ce
(cosza' + sinze'coszwge) _
1/2 '
~(2coswge(cos¢ + coswge)) exp(iKp + ik 2)/¥o (4.163)
¥ 2 .. a . 2 ae
a;e = 2cos"((¢ ¥ wse)/Z) ; a;e = 2sin ((¢-w.)/2) . (4.164)

and T was defined in Equation (3.244)., Note that the expression in

(4.163) takes into account the presence of two poles near the saddle

point.
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Substituting (4.160) into (4.158), one obtains

ik'z
0_,dsw z : o _iKpcos(w-4)
Hy Vo -—1r*——'j G (-Kcosw)sinw /27 Kd, e dw

r°
W (4.165)

where dg is given in (4.149), except that Hcy=0‘ Note that by deforming
the contour of integration rz to CSDP’ no poles of GTO are crossed.

Therefore, the total field H becomes

y
iklz
ez iKpcos (w-¢
H;=Hsgw =~ | GEO(-Kcosw)sinw VZn Kdg e ( )dw .
C
SDP

(4.166)

For large Kp, the diffracted field Hggw can be obtained by substituting

(3.299) and (4.149) into (G.13) such that

£y el ™% exp(-a10(4)/(27) Jexp (038 (w3®)/ (2m))
dsw

Hog (Ps#:2) =

yo /21K n (siné - sinwzo

) sin(wge/Z)

1/2
F(-Kpaho) 2cosw® (coswho +c0S ¢) cosa'sine'Gae(-ikcose')
. P s s
= . 2.0 2 ae 2.4
k|B o |(sin“8'cos“wg~ +cose')
/R sing sil® exp(ik z + iKo)/Vp . (4.167)

where a;o was defined in (4.164) except that "ae" is replaced by "ho".
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For Xs>0, the unperturbed surface wave field is

isw - . . ho ho !
Hyo (x,y,z) = Hcy exp(1K(ys1an - XCOSW¢ )) exp(ik,z) (4.168)

where ¢' = 320 = 21 - w:o, and
isw _
Eye =0 . (4.169)

The total field H; can be expressed as follows:

Ho(xy22) = HE"(x,y,2)U(0-B10) + W (x,y,2) + KOS (0,0,2) (4.170)

and HSZW are the reflected and diffracted surface wave

fields, respectively. The field H;zw is given by

rsw
where Hy0

Hrsw( tan(w:O) exp(-Jqo(wgo)/w)U(¢ -

~ho
yo <"s )

x,¥,2) = Hey

ho . Avr s s ho . - 3 _1
2cosw, sin8'(sin® cosw. - icos® IAce|/|Bce|)

01‘
(cosze' + sinze'coszwgo) 1
. ho . ho !
‘eXP(1K(xcoswS + ysinwg 1) exp (ik,z) . (4.171)

The diffracted field H;zw can be easily obtained by substituting (3.299)

into (4.137). Thus, for large Kp (and taking into account the two poles

near the saddle point)
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H ein/4
dsw - ol
(p 4”2) =

exp(-01°(#)/(21)) exp(-3}°(wh%)/(2m))

H

yo /Zak 2(sing - sinw2°)sin(w2°/2)

sec((¢-w:°)/2)T(a;o,a:°) - sec((¢+w2°)/2)T(a;0,ag°)

- 1 [ TP ho . Iy =
‘1 ) (cos¢ + cosw; )sin® (s1ne'coswS - 1cose'|Ace|/|Bce|)
(cosze' + sinze'coszwzo)
1/2 '
. cos(¢/2)(2cosw2°(cos¢ + coswzo)) exp(iKp + ikZZ)/JE- .
(4.172)
where ah: was defined in (4.164) except that "ae" is replaced by "ho".

Furthermore, T is the composite transition function defined in (3.244),

Since E_ =0, the expression for E>® becomes

cy y
e'k2 ~ iKpcos (w-4)
. iKpc -
A jeefe(-Kcosw)m ke C3/i e dw . (4.173)
r
L

The integrand in (4.173) has only one pole due to Gfe, but in deforming

the contour rs to the contour CSDP’ the pole of Gfe is not captured.

Therefore, the total field E§ becomes
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ik'z

e_.dsw z - e .e,. iKpcos(w-9)
Ey=Eye =~ G2€(-Kcosw) V27 ks, C;/1 e dw .
C
SDP (4.174)

szw can be obtained by substituting (3.299)

and (4.148) into (G.13) such that

Furthermore, for large Kp, E

Ho el exp(-338(4)/(2n) Jexp(-0}0(w00)/ (2m))

dsw cy
E,. (ps6,2) =
ye /ZmR Y (sin¢ - sinw:e)
1/
F(-Kpage) (2cosw2° (coswze +cos¢)) 2 Gho(—ikcose')
= . 2.0 2 ho 2.1
|Bce|(s1n 8'cos“w. + cos”0 )

/TR 2cos(#/2) cos8' exp(ik z + iKe)/VE™ . (4.175)

where a:e was defined in (4.164).

2. PMC Case

Without repeating the analysis of Section 1., the total fields E;
and H; can be obtained from Section 1. by duality. Thus, for XS<0, the

total field E; is given by

isw dsw
yo (X x5y,2) + Ej o7

yo Oa¢,z)

¥,2)U(4-4, ) + ELS"(

o -—
Ey(xy,z) = E yo

(4.176)

where ¢' = 27 - wzo and
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. . a0 ao ! )
= E., exp(iK(ysinw,~ - xcoswg )) exp(ik,z) (4.177)

(a2
rt
w
x
—
x
.
<
-
N
~—
|

yo cy
~a0
Ero (x,y,2) = Ec, tan(wg®) exp(-3}°(wg")/7) U(s - 3°)
2cosw:°sine'(sine'cosw2° - icosé'lﬁco|/|ﬁco|)
. 1 -
(cosze' + sinze'coszwgo)
[}
.exp(iK(xcoswg0 + ysinwzo)) exp(ik,z) (4.178)
¢y el /4 exp(-J?°(¢)/(2w)) exp(-J?o(Wzo)/(Zﬂ))
dsw
E (p ¢,Z) =
yo /7R 2(sing - sinw®)sin(wl®/2)
N ao - a0 ao + a0,
- |sec( (¢-w )/2)T(aao,ap ) - sec((é+wg )/Z)T(aac,ap )
. (cos¢ + coswzo)sine'[sine'COSwgo - icose'lﬂco|/|§col)
(cosze' + sinze'coszwgo) ‘
ao a0 172 A ..
»cos(4/2)(2cosw, (cosé + coswg )) exp(ike + ik 2)/Vo .

(4.179)

Since Hcy=0 for X <0, the total field H; is equal to the diffracted
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field H;Zw. Substituting (4.175) into (4.109) yields (for large Kp)

., e exp(-01®(0)/ (2m) Jexp(-93°(w20)/ (21))

e d cy
Ho(p,0,2) = HO 2" = he
/2t n (sing - sinw )
1/2
. F(-Kpage) (2cosw§° (coswze +cos¢) ) 62(-ikcose"')
= . 2. 2 ao 2.4
|Bco|(s1n 8'cos"w_~ + cos"e')

/2K 2cos($/2) cos8' exp(ik;z + ikp)/Vo . (4,180)

isw_n_ : 0
As shown before, when XS>0, Ey -O—Ecy so the total field Ey is

which can be also simply obtained

from (4.167) by duality. Thus, for large Kp (¢' = $ge = 2% - w:e)

dsw

equal to the diffracted field Eyo

ein/4
dsw o
E (p,d),Z) =
yo V2mk Y (sing - sinwgo) sin(wge/Z)

exp(-03°(6)/ (2r) Jexp( -0 (wI®)/ (2r))

1/2 he
(

F(-Kpago) (2cosw2e (coswgo +cos ¢)) cos8'sing'G ~(-ikcose')
o . 20 2 he 2.4
lecol(s1n 8'cos"w, +cos”8')
«/2K sin¢ sinw:e exp(ikzz + iKp)/Yo . (4.181)
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Furthermore, for the TEy polarization, the total field H;, likewise, can
be obtained by duality. It follows from Equations (4.161) and (4.109)
that

H;:w(x,y,Z)U(¢-$;e) + W% (x,y,2) + HISW (5 4.7) (4.182)

e -
Hy(x,y,2) = e e

where

isw
Hoe (X5¥,2) = H,

. . he he o
ve exp(1K(ys1an - XCOSW, ) exp(1kzz) (4.183)

Y

is the incident field, and

HPSW

v "e exp(-01%(w®)/n) U(s - ")

(x,y,2) = Hcy(l + coswze)/coswS

he_. ; he | . % = o]
2cosw, sin®'(sin8'cosw, + icos®'|A . 1/(B ,]) ‘

01- S
(cosze' + sinze'coszwge) I
. he . he !
-exp(iK(xcosw - + ysinw. )) exp(ik,z) (4.184)

is the reflected field. The last field component in Equation (4.182) is

given by
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MALZ exp(_dqe(¢)/(2“)) exp(-aqe(wze)/(zn)}

d Y
Hyzw(p,4),2) = . . he
/27K 2(sin¢ - sinw. )
. sec((¢+w2e)/2)T(a;e,a;e) + sec[(¢-w2e)/2)T(a;e,aBe)|
_ _
, (cos¢ + coswge)sine'(sine'coswge + icose'|KCO|/|§C0|)
_ (cosze' + sinze'coszwge) ‘
1/2 '
.(Zcosw:e(cos¢ + coswze)) exp(iKp + ikZZ)//B— . (4.185)

F. RELATIONSHIP BETWEEN THE (E,, H;) AND THE (Ey, Hy) FIELDS

In Chapter III, the solution of the canonical problem was expressed

in terms of E; and H; fields, while in Chapter IV, the normal fields Ey

and Hy were used. It is necessary to know how to transform from one set

of fields to the other in order to use both solutions together.

It is shown in [45] that if all the field components have the same

exponential z dependence exp(-ikzcos®8'), then, all the fields can be

expressed in terms of H, and E; as follows:

> - N 2
E(x,y,2) = Wx(Vx(zE ) + ikny(zH,)) /K (4.186)
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H(x,y,z) = VX(VX(EHZ) - 1'kY0(§EZ))/K2 ‘ (4,187)

As mentioned in Section B.3, it is shown in Appendix I that the
fields components Ey, Ez, Hy and Hz (in the s-domain) can be expressed
in terms of Ey and Hy. The expressions for these fields components are
given in Equations (4.69)-(4.72). It is more convenient to write these
equations in the periodic w-domain., Thus, substituting (4.115) and

(4,116) into (4.69)-(4.72) yields

sine'[cose'sinwﬁy(-Kcosw,y,z)+Yocoswa(-Kcosw,x,z)]

ﬁz(-Kcosw,y,z)=

2 2

1-sin“e'sin“w

(4.188)

sine'[cose'sinwa(-Kcosw,y,z)-nocosty(-Kcosw,x,z)]

E (-Kcosw,y,z)=
z 1- sinze'sinzw

(4.189)

Yocose'Ey(-Kcosw,x,z)-sinze'coswsiany(-Kcosw,y,z)

H (-Kcosw,y,z)=
X 1- sinze'sinzw

(4.190)
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_nocosB'Hy(-Kcosw,x,z)-sinze'coswsinwa(-Kcosw,y,z)
E (-Kcosw,y,z)=
x 1 - sin?

e'sinzw

(4.191)

2

Note that the roots of the denumerator (1 - sin e'sinzw) are not poles

of the above expressions. Furthermore, it will be useful for later use

to obtain expressions for the incident H; and E; fields in terms of the

tangential E; and H; fields. Thus, assume that the fields E; and H; are

given by
.i ~ . ] 1 [}
E, = E., exp(1(kxx - kyy + kzz)) (4,192)
-i . 1 " - [}
H, = H., exp(ilkx - kyy + kzz)) (4.193)

where E., and Hc, are arbitrary constants. Substituting (4.192) and

(4.,193) into (4.186) and (4.187) yields

m
I

-(n.cos¢’ H; + cos®'sing' E;)/sine' , 0<8'<m (4.194)

0

xI
(]

(Yocos¢' E; - cosB'sing’ Hl)/sine' , 0<8'<w . (4,195)
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G. DIFFRACTED Eg AND Hg FIELDS

In this section, the diffracted fields E9(x,y,z) and Hi(x,y,z) will
be computed using the results of the previous section,

The first step is to take the inverse Fourier transform of ﬁ; and
Eg. The fields Ei and Hi are given in Equations (4.76) and (4.78),
respectively, In the periodic w-domain, these equations can be writen

as follows:

HS = J gs(-Kcosw ¥,Z) eiKcoswx Ksinw dw (4.196)
9 s L)
z /or r z
W
1 - :
s .
Ez = J EZ(-Kcosw,y,z) e1Kcoswx Ksinw dw . (4,197)
Zn
W

Recall that the diffracted fields Eg and H; were contributions from a
integral along the steepest descend path which was evaluated
asymptotically by the saddle point method. Thus, substituting w=¢

(saddle point) into (4.188) and (4.,189) yields

sine'[coso'sing Hg(p,¢,z)+Yocos¢ E;(p,¢,z)]

d
H (ps¢sz)=
z 1- s1’n2

(4.198)

e'sin2¢
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sind'[cos8'sing Eg(p,¢,z)-nocos¢ Hg(o,¢,z)]

d
Ez(p,¢sz)= 2 2
1 - sin“8'sin"¢ (4.199)

The next step is to write the constants E¢y and Hey in terms of E.;
and H., so that the diffracted fields can be expressed in terms of E.,
and H., only.

PEC CASE.

Substituting (4.194), (4.195), (4.123) and (4.137) into (4.198) and

(4.199), and after some rather tedious algebra, one obtains

(¢ »$) + n H_cos6' D

cz l 1Kp+1k z)
do |e
EZ (p,¢,Z)= 2 2
1 - sin"8'sin"¢ (4.200)
l:H Dhl( ) + Y E cose D ¢ ,0) \
cz ze'" ? (1Kp+1k z)
de
HZ (ps¢s ) 2 2
1 - sin“8'sin"¢ ry (4.201)

where the subscripts and superscripts attached to the diffraction

al a2 .hl h2
coefficients {Dzo’ 0,02 Dses Dye } refer to the following facts:

(i) "a" refers to the electric field, while "h" refers to the

magnetic field.
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(ii) "z" refers to the fact that these diffraction coefficients
pertain to the E, and H, fields.
(iii) "e" refers to the even case, whereas, "o" refers to the odd

case,

a2 Dh1 h2
zo? zo’ ze’ ze

expressed in terms of the diffraction coefficients obtained in Chapter

The diffraction coefficients {D } can be

II1 as follows:

hl da cce
D,e(d',8) = cose D (¢',4)[cose’ - (cose + cose')F;"]
+ cosze'sin¢s1n¢‘ Dsg(¢',¢)[l-(cos¢ + cos¢')?§ej (4,202)

02§(¢',¢) = sin¢g Dsg(¢',¢)[cos¢' - (cosé + cosé')F§e]

+ coSé D;Z(¢',¢)[-sin¢' + (cos¢ + cosé' )Fce] (4.203)

D35(8'58) = coss DO (4',4)[coss' - (coss + cose')F{®]

+ cosze 'sin¢g Dye( ¢',0)[sine' - (cos¢ + cos¢')?ie] (4.204)

dh

Dyo(#50)[1 - (cosé + cos')FS°T

az2, ., _
D,o(¢'59) = cos¢sing’

+ sing Dda( ',o)[-cos¢' + (cose + cos¢')Fge] (4.205)
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where the diffraction coefficients (Dsg, Dgg ) are exactly the same as

d d :
the diffraction coefficients (De, Do) of Chapter III, except that k is

replaced by K, Therefore, it follows from (3.210) and (3.242) that:

1/2
_eiw/4 (1 - Rg)/z [(sing?€-cos¢)(sing?®-cos¢')]

ye V21K (sin¢ + cosaae)

cexp(~(97° ()45 (8'))/(20))+ (sec(8%/2)F (-KLa*)+se(8/2)F (-KLa"))

(4.206)
1/2
_ein/4 (1 + Rg)/Z [(sinsho-cos¢)(sinEho-cos¢')]
dh
D, . (4,¢") = h
yo V2mK (sing + cosk 0)

.exp(-(Jqo(¢)+J2°(¢'))/(Zn))-(sec(B-/Z)F(-KLa_)-se(3+/2)F(-KLa+))

*cos(4/2)/sin(4'/2) (4.207)

where the subscript "y" refers to the Ey and Hy fields.
The functions {Fge}?=1, which do not depend on the angles of

observation (¢,8), are given by
Fie(¢',8')= cos¢'F§e+ 2c0529'cos(¢'/2)sin(¢')F;e (4,208)

2

F5°(6',0")= cose'F§+ cos 8'sing'Fg® (4.209)
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PSe(e',0')= F{®- F3® cose'/sin(s'/2) (4.210)

Fao(e',0')= sing'F3°- cos ¢'F,° | (4.211)
where

Fie(¢',e')= sing'(sin8'cos¢' - icose'|Rce|/|sce|)/(l-sinze‘sin2¢')

(4.212)

Fge(¢',e')= sing'(sind'cos¢' + 1cose'|z |)/(1-sin29'sin2¢')

cel/IBce
(4.213)

sine'cosgae(sin¢'+cos5h°)exp([dqo(¢')-Jge(¢')]/(2"))

ce

F, (¢',8')= =

2 (l-sinze'sin2¢')k B (sin¢‘+cos§ae)(1+sine'cos£ae)
ce

. V2K ((sineae-cos¢')/(sinsho—cos¢‘))1/2/51n¢' (4.214)

25in(9'/2) (sine'+cose®®)exp([93%(8')-01°(s") ]/ (2m))

ce
Fa (8',08')= z
4 (1-51"29'5i"2¢')k|3c9|(Sin¢'+cos§h°)(1+sine'cos£h°)

. V2K ((sinsho-cos¢')/(sinsae-cos¢'))l/zlcos(sae) . (4.215)
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Note that for a given ¢', 8' and &, the functions {F?e}?=1 are fixed,
which is very helpful when the diffraction coefficients have to be -

computed.

PMC CASE.

de do

The diffracted EZ and HZ fields can be simply obtained by duality

from the results given for the PEC case, that is

al ' ] a2 ]

—Ecz Dze(¢ »4) + nochCose Dze(d> »9) (iKp+ik'z)

de e z

EZ (p,¢,Z)= 2 2

1 - sin“8'sin“¢ Yo (4.216)

" o n1, C M2,
|'ch Dzo(¢ s9) + YoEczCose Dzo(¢ ’¢)| (iKp+ik;Z)

HI (p,8,2)= :

Z ’T 2

1 - sin e'sin2¢ ‘ Vo (4,217)

where

Dié(¢',¢) = COS$ D;g(¢',¢)[COS¢' - (cos¢ + cos¢')Fg°]

+ cosze'sin¢sin¢' Dda(

yo(8's8)[1-(cose + c05¢')F§°] (4.218)
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ze

dh
ye

hl, ., _ da, ., ' 1\ oCO
D,o(¢'s4) = cos¢ Dyo(¢ ,$)[cos¢' - (cosé + cos¢')F] ]

2

+ cos“9'sing Dsg(¢',¢)[sin¢' - (cos¢ + coS¢')E2

- sing 032(¢',¢)[-cos¢' + (cos¢ + cos¢')E§°]

ae)

dh v he da '

da . a0, _ .dh , ho
Dyo(d”‘b sE ) = Dy0(¢’¢ sE )

FSO(9',0",670,6™) = FS8(s',0,6™ ¢
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ae)

i=1,2,3,4

022(4',4) = -sing DJ(4',4)[cose’ - (cose + cose')F{°)

- cos¢ D _(¢',4)[-sine' + (cos¢ + cos¢')?§°]

(4.219)

(4.220)

(4.221)

(4.222)

(4.223)

(4.224)



CHAPTER V

DIELECTRIC/FERRITE BISECTION PROBLEM

Recall that when the solution of the dielectric/ferrite bisection
problem (even and odd) was being discussed in Chapter II, it was
mentioned that this problem was still fairly complicated. In order to
simplify the problem, the thin, grounded dielectric/ferrite slab was
replaced by an impedance wall, In this chapter, two different ways of
modifying the solutions obtained in Chapters III and IV will be shown,

The first approach is to try to obtain a value for Zg from the
parameters describing the dielectric/ferrite slab, i.e., d, €, ur.
This approach applies to thin dielectric slabs (a more specific
condition on how thin will be given below). The second approach is to
modify the solutions obtained in Chapters III and IV, so that the
geometrical optics fields are the exact fields which can be obtained by
applying the exact houndary conditions to the grounded

dielectric/ferrite slab.,
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A. FIRST APPROACH

In order to obtain the value of the impedance Zgy assume the
geometry is as depicted in Figure 5.1 where a dielectric/ferrite slab
above a perfectly conducting electric or magnetic plane is shown.

Following the same procedure as in [21,46], it can be shown that if
a dielectric/ferrite slab of thickness d/2 as shown in Figure 5.1

satisfies the condition

kd/2 N| << 1 (5.1)

where N, given by

(5.2)
N = (erur)1/2
ﬁ y
y
\AV \ AR YA} )
d/2 €ry Kr\ \i

\\\\\\ ' X z X
PEC OR PMC

Figure 5.1 Grounded Dielectric/Ferrite Slab.,
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is the index of refraction, then ZS can be approximatly found as

follows:

(1) TE, polarization (H,)

n
. 0 2 d
I ~ - : (N -1) k 3 (even case) (5.3)
2 no
I, =i m (odd case) . (5.4)

(i1) T, polarization (Ez)

1 4, d
— =Y = (N -1)k o (even case) (5.5)
L S nNykp 2
1 i 2 ( )
—y ——— (odd case . 5.6
2, " s " ng(ue-1) kd )
(iii) TEy polarization (Hy)
1 i, d
— =Y = (N -1) k 7 (even case) (5.7)
Zs S NoMp 2
1 i 2
7. =Y = (D) kd (odd case) . (5.8)
r
i ™ i i
(iv) Y polarization (Ey)
. T‘0 2 d .
I ~ - . (N'-1) k 3 (even case) (5.9)
12n0
I =~ ?E;iES"EE (odd case) . (5.10)
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Reca]i that the final objective of this study is to obtain a
solution for a thin dielectric/ferrite half-plane. As shown <in Chapter
IT, this can be accomplished by adding the solutions of the even and odd
bisections. The validity of this approximate representation for a thin
dielectric/ferrite sheet (by an equivalent impedance Zg) can be
established [17] by comparing the corresponding reflection and
transmission coefficients (obtained by susbstituting Equations
(5.3)-(5.10) into (2.11) and (2.12)) for a plane wave incident on a
sheet of infinite extent, with the expressions obtained by application
of the exact boundary conditions. It is found [17] that the results

agree provided that Equation (5.1) is satisfied.

B. SECOND APPROACH

As stated above, the second approach is to modify the solutions of
Chapters III and IV, so that the geometrical optics field is exact.
This implies that the diffracted field has to be modified also in order
to obtain a continuous total field at the shadow boundaries.
| Thus, a modification of the reflected geometrical optics field will
be considered first. This will be fol]owed'by a modification of the
diffracted field component. Finally, the expressions for the surface
wave field (excited by a plane wave incident on the even and odd
bisections), reflected surface wave field, and diffracted surface wave
field will be modified.

It is well known that an infinite number of surface wave modes
(even and odd) can exist in the dielectric/ferrite slab [21] with all
the modes, but one, having a lower frequency cutoff. The only mode
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without lower frequency cutoff is the lowest order even mode. In this
second approach, it will be assumed that the dielectric/ferrite slab
parameters are such that only the lowest order even mode (TE and/or ™)
can exist.

For example, for a lossless dielectric slab, the values of %’at
cutoff for both TE and TM polarizations are given by [21]

n
= 2(e-1)1/2 n=0,1,2,3, ... (5.11)
r

d

A
where A is the free space wavelength, €, is real and "r=1° The even
integers refer to the even modes, while the odd integers refer to the

odd modes, Thus, if

d 1 .
0 < T<3T 172 (5.12)
A 2(er-1) s

only the lowest order mode can exist.

Note that an important assumption is being made here in treating
the diffraction problem from a dielectric/ferrite ha]f-p]ane. Since the
solutions obtained in Chapters III and IV are being modified in order to
treat the dielectric/ferrite half-plane problem, it is assumed that the
dielectric/ferrite half-plane has only one equivalent diffracting edge
instead of the two geometrical edges at the end of a half-plane of
finite thickness, This assumption is found to be valid as long as the
dielectric/ferrite half-plane is less than one quarter wavelength inside

the dielectric/ferrite medium,

202




1. Modification of the Reflected Geometrical Optics Field

It was shown in Chapters III and IV that the unperturbed reflected

field can be written as follows:
)

k_z

. o
Gf( -1KDCOS(¢+¢ ) e Y4 (5'13)

p,¢,Z) =V R(¢|) e

where R(¢') is the Fresnel reflection coefficient of an impedance wall,
and k;=0, K=k for the special case of normal incidence.

It is easy to show that an expression similar to (5.13) is obtained
for the geometry of Figure 5.1 if the exact boundary conditions are
applied. It is shown in Appendix J that the reflection coefficients for
the TEZ, TEy, TMZ and TMy polarizations can be obtained by the
Transverse Resonance Method. Note that the reflection coefficients
obtained in Appendix J are referred to the x-z plane.

It follows from Appendix J, that the reflection coefficients of

Figure 5.1 (referred to the x-z plane) for the different polarizations

- -i . C
can be expressed as follows (e wt time convention):

EVEN Reflection Coefficients

wl 48(s',0%)/sin0’

sing' - r
(40,0 - 1 e KU(850') . (48) ocgrcn
sing' + u_ ye(¢',e')/sine' y
r (5.14)
: ] ’1 e ] | . )
sing' - e v (¢',8')/sin®
RE(s',0") = =) sikw(e,0 ) ; (E;), 0<8'<n
a sing' + € Y ?¢‘,e')/sine'

(5.15)
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sing' - wt v%(s',0'=n/2)

-iku(s',0'=1/2)

RE(¢',0'=1/2)
a sing' + u;l Ye(¢',e'=n/2) e
(EZ), 8'=n/2

(5.16)

sing' - e;l Yo (9',0'=1/2)

e-ik¢(¢',9'=ﬂ/2) N

’

Rp(8',9'=n/2)

sing' + e v®(9',0'=7/2) .
(Hz)a 8'=m/2

(5.17)

0DD Reflection Coefficients

sing' - u;l YO (4',8')/sino"
ﬁg(¢',6') = 1 o e-ikw(¢',9 ) ; (H;), 0<8'<m
sing' + urt y°(3',0")/sine’
(5.18)
- -1 o, s oAt
sing' - e v (4',8')/sind
ﬁg(¢|’el) = e-ik¢(¢ls9') ;(Eg)’ 0<8'<n

sing' + e;l Y°(¢',e')/sine'
(5.19)

sing' - u;l P©(4',08'=1/2)

omike(e!,0'=m/2)

b

§0(¢lse‘="/2) = _
° sing' + url Y(4',8'=1/2)

(E3), 0'=n/2

(5.20)
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sing' - 7t Y°(4',0'=1/2)

r .
~0 3 ' [
Ry (8',0'=1/2) = T emikulet,07=1/2)
sing' + €. Y (¢',08'=m/2) o
(H)), 8'=n/2 .
z
(5.21)
The expressions for Ye’ yo and ¥ are such that
e 2 2 .2, 2 _1/2
y (4',0') = -i[N -cos 8'sin ¢'-cos ¢']
|7 2 2 2 2 172 d
stan | [N -cos 8'sin ¢'-cos ¢'] k 5 (5.22)
o 2 2 2 2 _1/2
y (4',8') = +i[N -cos 6'sin ¢'-cos ¢']
T2 2 2 2 172 d
scot | [N -cos 8'sin ¢'-cos ¢'] k5 (5.23)
and
¥v(¢',8') = dsind'sing’ (5.24)

where N is the index of refraction and it was defined in Equation (5.2).
The reflection coefficients defined in Equations (5.15), (5.19),
(5.14) and (5.18) are shown in Figures (5.2)-(5.5), respectively, for

8'=w/6, d/2=0.025x , and for the following values of €_ and u.

r

(1) e. = 2.(1+ 10.05) u. = 1.(1+ 10.0)
(2) e, =3.(1+ i0.0) u. = 1.(1+ 10.0)
(3) €. = 3.(1+ i0.1) M, = 2.(1+ i0,1)
(4) e, = 3.(1+ i0.05) u. = 4.(1+ 10.05)
(5) e, = 4.(1+ 10.1) w, = 4.(1+ §0.1) .
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Note that the reflection coefficients shown in Figures (5.2)
through (5.5) can be controlled (magnitude and phase) by varying the
values of €ns M. and d. The reason for referring the reflection
coefficients to the x-z plane is because the edge diffracted field from
the dielectric/ferrite half-plane is assumed to originate from an
equivalent edge located half way between the two geometrical edges of

the half-plane of finite thickness.

Since the geometrical optics field has been modified, the
diffracted field has to be modified also to have a continuous total
field at the boundary ¢=m-¢, where the reflected field becomes
discontinuous., First, the diffraction coefficients (for plane and
surface wave incidence) and the surface wave launching coefficients for
the 2-D (normal incidence) impedance bisection problem will be modified.
In Section C, the more genera1‘3-D results obtained in Chapter IV will
also be modified, however, unlike the 2-D case, a combination of the

first and second approaches will be used.

2. Diffraction Coefficients for the Normal Incidence Case (8'=m/2)

Recall that the diffraction coefficients D: and Dg obtained in
Chapter III are a function of E, which is related to the normalized
impedance or admittance as shown in Equations (3.96) and (3.156). The

goal of this section is to find an equivalent & for the
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dielectric/ferrite slab depicted in Figure 5.1. Unlike &, the new-E
will be a function of ¢' and 6'.

In order to obtain the new function E, note that near the boundary

d
0

bisection problem (see Chapter III) are equal to

¢=n-¢', the diffraction coefficients Dg and D_ for the impedance

|"1-R
d €50 ~ e,o0
D, (¢~m-0¢',4"',0'=n/2) = sign(e) + CT™? (5.25)
e,0 _ 2
where CT®20 45 a continuous term at the boundary ¢=w-4' and
E=¢+ ¢ - . (5.26)

The sign that t takes on both sides of the shadow boundary is depicted
in Figure 5.6. Note that Re o° defined in (3.20), is the Fresnel

reflection coefficient for an impedance wall.
Furthermore, it is easy to prove that Dg and Dg satisfy the Lorentz

reciprocity theorem, that is [47]

D5 o(6:6) =00 [(69,9)  , 0<(h8) < . (5.27)
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Figure 5.6. Sign of € near the reflection shadow boundary.

Now, let Dg and Dg be the even and odd diffraction coefficients for the
dielectric/ferrite bisection problem, respectively. These two
diffraction coefficients also satisfy Equation (5.27). In addition to

that, they satisfy an equation similar to (5.25), that is

’ sign(s) + CT:° (5.28)

DY ol ¢=m-¢',4',0'=n/2) =

where ﬁe 0 is the reflection coefficient defined in the previous section
]

and C1%:° is a continuous term at the boundary ¢=m-¢'.

212




The first step in finding the function E is to'define a new

function Rg which assumes the value of Re o at the boundary ¢=n-4',

that is
d sing' - cost’  -iky
(¢,9') = e (5.29)
e sing' + cos®®
~d sing' - cosg0 -ikP
RO(e,0") = — e (5.30)
sing' + cosE
where cosEe and cosE0 are defined as follows:
4 1 (. - 7 ' - _ *e,0
Se,0(0s8",0'=1/2) =8, (4',4,8'=7/2) = cosE
_h - -~ =
r ~e,0 z
=] 1] (¢,6,8'=7/2)5 | (5.31)
and
~e 2 1/2
Y (¢',6,8'=n/2) = -i[N -|cos¢coss'|]
|7~ 2 /2
stan | (N -|cos¢cosé’'|) kd/2 (5.32)
~0, ., . 2 1/2
Y (¢',9,8'=n/2) = i[N -|cosécos¢'|]
T2 172 |
*cot | (N -|cos¢cose'|) kd/2 | (5.33)

| .—|
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m m d d
$(9,0',0'=5) = §(¢',6,0'=5) =7 sin0'(singtsing’)| = 7 (sing+sing’)

8'=w/2
. (5.34)
Note that ;e and ?0 are functions of ¢ and ¢', while Ye and YO were not.
Moreover, 0 is equal to ye’°(¢',e'=n/2) at the boundary ¢én-¢'. For

the lossless case (N real) and for 4, ¢' in the interval 0<(¢,¢')<w, it

is desirable that Eé and 36 do not change sign. It follows that

2 172 kd  «
0 <[N - |cosecsod'|] <7 , 0<(¢,0") < (5.35)
which implies that
d 1
* <IN (5.36)

where A is the free space wavelength. Note that if Equation (5.36) is
satisfied, Equation (5.12) will also be satisfied. The above
restriction is due to the fact that Eé,o plays the role of an equivalent
normalized reactance (or susceptance) for the dielectric/ferrite slab

depicted in Figure 5.1.

Replacing ﬁ; o by ﬁg o in the term (ltﬁé o)/2s one gets
I T~
1-R =ik -iky
e l-e sing' 1+e cosEe
2 | T 2 * 2

. . e
| s1n¢'+cosEe sin¢'+cosE

— —

(5.37)
and
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1+R ~
0 | cos(4/2) -iky cos(¢'/2) cos(4/2)
> = (1+e ) o
sin{¢'/2) sin¢'+cosE
-iky ~
1-e cosE’ cos(4/2)
+ 2 ~ . (5.38)
(sing'+cost’) sin(4'/2)

Recall that Dg and Dg have to satisfy Equation (5.27), however, (5.37)
and (5.38) do not satisfy these two equations, so one more modification

is necessary. The new quantities (1-R:)/2 and (1+Rg)/2 which satisfy

Equation (5.27), are defined in Equations (5.39) and (5.40) as follows:

1-R¢ ik¥ _ik¥ /2
€ lte | cosE 1-e (singsing')
2 | = 2 . . ~e + 2 .y ~e
| | sing +cosE | sin¢'+cosE
(5.39)
and
1+¢ Lre-ik¥
2cos(¢'/2)cos(9/2)
2 2 l sin¢'+cos§°
-ikv
1 ‘ cos 0 e'f
+ 2 o (5.40)
_ sin¢'+cosg
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where

|sin(e + ¢')|
2 )

(n-¢) (m-¢')

f(¢',9) = f(o,9') = . (5.41)
The new function f(¢',4) was introduced because the term

cos(¢/2)/sin(¢'/2) in (5.38) becomes unbounded at ¢'=0. Note that the

function e'f assumes the following values when ¢ = m or ¢ = m-¢':

-f |1 at ¢ = m-¢'
el = | 1 A e (5.42)
0 as ¢ »
and
= g - - = - -
1-Re 1-Re 1+Ro 1+Ro
2 | = | 2 , 2 | =72 (5.43)
as required. Furthermore, when d is very small
$=~0 (5.44)
and
l-Rg ~e | 1+Rg
COSE 2cos(¢/2)cos¢'/2)

| == ~ . (5.45)
2 sin¢'+cos£e 2 sin¢+cos£e
The modifications made above may appear arbitrary, however, as
shown in Chapter VIII, they give very good results when compared with
solutions obtained using the method of moments.
Using the results obtained above, the new diffraction coefficients

D: and Dg for the geometry depicted in Figure 5.7 can be written as

follows.
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PEC OR PMC

Figdre 5.7. Dielectric/ferrite bisection problem,

|7 =g
| 1-Rq REZ
4 (4,0') = D3_(9',4) = -

ez'\"? ez ¢ 2

/7

e T€¢ 1
~ ~ 172 J1(8)Hi(e')
. [(sing®-cos¢)(sintZcose')] - o

sing+cost®

. | sec(8+/2)F(-kLa+) + sec(B /2)F(-kLa") , 0< o<

- - (5.46)
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—
1+R0

_ in/4
iy ] - ~d ] -
Dy (¢s0') =D (¢ »9) = o 2
. 0 70 ayql/2 M()H1(s")
. [(sing -cos¢)(sint=-cos¢')] - on
e

sing + cosg®

. | sec(B /2)F(-kLa") - sec(8+/2)F(-kLa+)

(5.47)

where

~ t
Jg’e(W) = j S]nt dt . (5.48)

3. Modification of Surface Wave Field Excited by a Plane Wave

(Normal Incidence)

From the results given in Chapter III, the expressions for the

SW

surface wave fields uzw and S

can be completely specified in terms of
g and W which is the pole of G_(-kcosw). Since Ee,o can be expressed
in terms of wi’o, the fields uzw and ugw can be represented as a

function of W only,
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SW

Thus, the first step is to rewrite ug W

and ug in terms of w_.

s
Substituting Equations (3.167) and (3.215) into (3.200) and (3.233),

respectively, yields

Uzw(p,¢,wi) u' (QE) L;:(¢',w§) exp[ik(xcosw§+ysinw§]U(¢-$§) (5.49)

ug" (p,,Wg) = u'(QE) L33(4",wQ) explik(xcoswgrysinwgIU(4-37) (5.50)

SW SW .
where Lze and LZo are the even and odd surface wave launching

coefficients, respectively, and

ul (QE) = ul(p=0) = ve-Tkecos(4-¢') v . (5.51)
p=0

The coefficients L:Z and Lig are given by the following two

expressions:

., e - e 1172
sin(w>) 2(cosw_+cos¢')
SW, ., @ S S
Loa(8%ws) =~ . e e
sing'-sinw COSw

S — S —

- B
-1 - -
wexp | 77 [97(wWg)+07(6")] |+ [sec((wg-0')/2) + sec((wg+4')/2)

(5.52)
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' 0 _ -
-2cos(¢ /2)cos(ws/2) 2(coswg+cos¢') 1/2
SW,., 0, _

. . 0 0
s1n¢'-s1nwS COSW

— —

-1 - -
cexp | o [a?(w§)+ag(¢')1 . sec((w§-¢')/2) - sec((w:+¢')/2)

(5.53)
where
2T-W_-qa
t
Jila) = | STt dt . (5.54)
ws-a

Note that QE is the point where u ¥ s excited, which in this case
happens to be the origin,

It is shown in [21] that for the grounded dielectric/ferrite slab
depicted in Figure 5.1, the propagation constants cos(ws) and sin(ws) of
a surface wave field are a function of the poles (on the proper Riemann
surface) of the reflection coefficients defined in Equations (5.16),
(5.17), (5.20) and (5.21) with ¢' replaced by the complex variable w,

In other words, for the grounded dielectric/ferrite slab of thickness

d/2, W is the root of the equations:
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-1 E

. e r 2 2 o 172 2 2 o 172 d z

sinwg - 1 1 (N -cos ws) tan | (N -cos wS) 7 | =0; H
—-r _ - - -
€ | Izl
(5.55)

and

- - | - ~ -

.0 . ¥r 2 2 o.172 2 2 9172 d z

sinw + i 1 (N -cos ws) cot | (N -cos ws) k 7 | =0; H
-r _ - — -
€ l l_ 2|
. (5.56)

Since Equations (5.55)-(5.56) have many solutions, the roots W, have to
Tie in the correct location of the periodic w-domain so they will
correspond to physically possible surface wave fields (see Figure 3.11).
Furthermore, it was assumed at the beginning of Section B, that the
parameters of the dielectric/ferrite slab (er’ Hps d) are chosen so that
only the lowest order even mode can propagate. Thus, only Equation
(5.55) has to be solved for the root w§ corresponding to the lowest

order even mode, and the field ug

exist. Once wg is calculated in (5.55), then u

by substituting wg into (5.49) and (5.52).

W given in (5.50) is not allowed to

SW

e can be easily computed

4, Modification of Reflected and Diffracted Surface Wave Fields
Excited by an Incident Surface Wave (Normal Incidence)

The procedure for modifying the reflected and diffracted surface

wave fields is the same as in Section 3. In other words, the
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expressions for the reflected and diffracted surface wave fields are

rewritten in terms of W only, where w_ is calculated by solving

3
Equations (5.55) and (5.56). It follows from (3.278) and (3.291) that

rsw _ isw SW, e . e, . e

g (ps8) = u,""(QR) R (w) expLik (xcosw +ysinw)] (5.57)
rsw, _ isw SW, 0 . 0, . 0

Uy (Ps9) = u " (QR) R (w.) explik(xcosw +ysinw,)] (5.58)

where wi and wg are the roots of Equations (5.55) and (5.56),

respectively. The functions Rzg and Rgg, given by

|_i+coswe—1 |_-1 2m-2wS l
SW, e, _ S oo s t
Raz(wg) = o exp / sint dt (5.59)
COSW
—_ s _ _ 0 —
and
T
RZ¥w0) = tan(w®) = ?ﬂ s _t dt | (5.60)
0z''S S exp sint s .
- 0 -
are the even and odd reflection coefficients, respectively. u1sw(QR) is

the incident surface wave field evaluated at the point of reflection QR,
which in this problem happens to be the orgin. That is,
1k(-xcosws+ysinws)

QR) = ve =y . (5.61)
x=y=0

u'lSW<
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The diffracted surface wave fields can be rewritten as follows:

eikp
dsw _ . isw swd _____
ug” " (ps9) = ug""(QE) D, (5.62)
Y
e'Ikp
ud(0,0) = ui™"(eE) DN — (5.63)
'y
where D::d and ngd are the surface wave diffraction coefficients which

can be obtained from Equations (3.318) and (3.332) such that

K] 1A . ' e\ - -~ ’ E\Iq ..... \ _|1/2
. =1n/§ sIn{w_) £COS(W_)11COS9)
ie s S
psWd .
ez e e e
2k (cosws+cos¢) (cosws-l)(cos¢-cosws)
- —1/2 - —
sin¢+sinw§ ) |
el e | 3= [9S(8)+C ()]
. . e P 2n 1 1'V's /-
sing-sinw,
. . - 0172
. =in/4 sing 2cos(w.)
je s
Dswd -
0z 0 0
/2wk (cosws+cos¢) COSW_-COS$
- . o172 - -
sing+sinw, 1
- > . — 40 0, 0
* . .0 exp 2 [J1(¢)+J1(WS)]
_sing-sinwg |
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The point QE is the point of diffraction which in this particular

problem is equal to QR. Thus,

uSY (QE) = v . (5.66)

As in Section 3, if only the lowest order even mode is allowed to exist,

SwW swd
R0 and DOZ are equal to zero,

C. MODIFICATION OF DIFFRACTED FIELD FOR PLANE WAVE INCIDENCE
(OBLIQUE INCIDENCE CASE)

As shown in Chapter IV, the diffraction coefficients for the fields
Eg and Hg can be expressed in terms of the two-dimensional diffraction
coefficients (obtained in Chapter III) and the ?i-functions. Note that
all the ?i-functions are multiplied by (cosé+cosé’') which is zero at the
shadow boundary ¢=n-¢'. This means that the ?i-functions do not play a
very important role near the shadow boundary. Consequently, the two
approaches described in Sections A and B will be combined to modify the
diffraction coefficients for the case of oblique incidence.

The diffraction coefficients (092, pd" nd8 pI" i1y be modified

ye®> “ye’ “yo*® “yo
following an approach similar to that in Section B.2. First, the

functions 3e and 30 are defined as follows:
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) S

~e,o(ﬁ) _ etlo(¢’4",el) _ ef' ~e,0 . . E.y
cost - sine' - -1 Y (¢|’¢se')/51nel’ H
Mo |_Y_
(5.67)
where
~e — L 2 1/2
Y (¢',4,08"') = -i[N -(|cosécos¢'| + |sindsing’|cos 8')]
| 2 2 172
stan , [N -(|cos¢cose'| + |sinesing'|cos 8')] kd/2 (5.68)
°(6',4,8') = i[N -(|cos¢coss'| + |singsing’|cos 8')]
T2 2 /72
ecot | [N -(|cos¢cosé'| + |sin¢sine’|cos 8')] - kd/2 | . (5.69)

As in the 2-D case, ?e’°(¢‘,¢,e') is equal to v%2C% when ¢=m-¢'.

Next, the expressions (1+§g)cos(¢/2)/(251n(¢'/2)) and (l-ﬁg)/Z are
replaced by two new functions (1+Eg)/2 and (1-52)/2 given in Equations
(5.40) and (5.39), respectively, except that the functions cosE® and
cosE® which appear in (5.39)-(5.40) are replaced by the ones defined in
(5.67). Furthermore, the function $(¢,¢',e') given in (5.34) replaces
P(6,4',0'=n/2) in (5.39)-(5.40). Therefore, the new diffraction

da dh .da .dh

coefficients {Dye' Dye’ Dyo’ Dy0 } are similar to those in

(5.46)-(5.47), except for the changes mentioned above and the fact that
k is replaced by K.
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Since the Fi—functions are multiplied by a function which is zero
at the boundary ¢=m-¢', they are modified as indicated in Section A;
i.e., "the first approach". 1In other words, the parameters
{Eae, an, Ehe, Eho} which appear in the Fi-functions will be replaced
ao’ éhe’ Eho}

by the new set of parameters {gae, g which are calculated

as follows:

-i(N2-1)kd
cosghe = W . 0<o' < (5.70)

i2
ho

cosg'” ~ u kdsine’ »  0<0 < (5.71)

2
-i(N -1)kd

cosgae = ;;EE;EET-— R 0<8' < (5.72)

i2
cosg? * e kdsine' ’ 0<8 <m . (5.73)
Note that the real part of the parameter £ is restricted to the interval

0 < Re (£) < n/2.

D. MODIFICATION OF SURFACE WAVE FIELD EXCITED BY A PLANE WAVE
(OBLIQUE INCIDENCE)

Recall that the surface wave fields E;w and H;w are expressed in

terms of the incident fields E; and H;. In order to express E;w and H;w
in terms of launching coefficients similar to those defined in Section

B.3, it is necessary to rewrite E; and H; in terms of E; and H;.
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PEC Case
Substituting (4.194)-(4.195) into (4.121) and (4.135) yields

ae

s ae swa,,, ae ae
Ey:(¢"¢’g ) = Lye (¢ s )« [cose' PZS Ecz M Pls ch]
~ae ikZZ : ae . ae
« U(¢-¢.7) - e . exp [1K(xcosws +ysinwg )] (5.74)
SW ho swh ho v pho ho
Hoo(8' 0,87 ) = LuR(e" W) = [cos®' Ppg Ho, + Yo Prg Ecpl
]
ik, z
. U(¢-¢2°) ce 2 .exp [iK(xcosw2°+ysinw2°)] . (5.75)

Swa

The surface wave launching coefficients L e and L;gh are given by

Swa ' ae, _ SW,,; e . 1

Lye (¢ MW } = LZe (¢ ,ws)/s1ne (5.76)
LS o w0y = L SW(e' ,w0)/sing’ (5.77)
Yo o W) = Lyp (o7sWg *

where LZ: and Lzz were defined in (5.52) and (5.53), respectively.

' ae .ae .ho _ho .
The constants {Pls’ p2$’ Pls’ PZS} can be expressed as follows:
P?g = -cos¢' + (cos¢' + cos wie) ?;e (5.78)
Pgi = -sin¢' + (cos¢' + cos w:e) ?ze (5.79)
Pho _ ' ' ho pce 5.80
1ls = cose' - (cos¢' + cos W, ) 1 (5.80)
Pho . . Vot ho, =ce 5.8
og = -sing' + sing (cosé Cos W, ) F3 (5.81)

where the functions {Fge} were defined in Chapter IV,
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ae ho
" and wS

swa sth
ye *> “yo

The constants w which appear in the launching

coefficients {L } are the roots of the following equations:

ae -1

sinwS t e, Ye(w:e,e')/sine' =0 (5.82)
sinw2° + u;l °(w2°,e')/sin6' =0 (5.83)
where
@ 2 2 2 2 _1/2
y (w,8') = -i[N -cos 8'sin w-cos w]
|7 2 2 2 2 _1/2 kd
« tan | [N -cos 8'sin w-cos wl 3 (5.84)
0 ' 2 2 2 2 _1/2
Yy (w,8') =i [N -cos 8'sin w-cos w]
T2 2 2 2 _1/2 kd
« cot | [N -cos 8'sin w-cos w] > ' . (5.85)

?ce

~Ce «~Ce ~Ce
15 F

The constants { 5 » F3 5 Fp } can be modified in two ways.

The first approach is the same as in Section C, which is to calculate

the parameters {gae, gho} from Equations (5,71) and (5.72). The second

ae ae

s
roots of (5.82)-(5.83). The latter approach is considered to be more

approach is to express {&°°, Eho} in terms of {wS-, wgo} which are the

accurate,
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PMC Case

By duality, it follows that

ao - 1 a0
) | cos® P2S E

ESo (8',0',6%0) = Log® (o' .wg

yo

c U($-3%°) e e % exp

W, 4 . e, _swh , , he he
ye (¢ ’e s€ ) - Lye (¢ ’wS ) PlS YO EC
ik_.z - -
« U(4-3%°) e e 7 exp 1K(xcoswge + ysinwze) l
where
s a s h h
w (¢ ,W yg (¢ ’ wSO)

swh _ ,Swa,,, ae
(',wg%) = Loa (o', W3®)

Pao ao

- [} ' ~CO
1s = -COs¢' + (coswS + cos¢') Fq

ao . . ao =Co
P25 = -sin¢' + s1n¢'(coswS + cos¢') F3

he _ ‘ ' he, ~co
Pls = cos¢' - (cos¢' + cosw, ) Fs

. he, =
Pgi = -sin¢' + (cos¢' + coswse) FZO
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. a .
1K(xcost° + ys1nw:°) '

+ pao

1s

he

H

"o Mez

+ P25 coso' H

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)



ao he

The constants W, Wgo are the roots of the following equations:

sin wP® + w7 y2 (Wl 0')/sine’ = 0 (5.94)
sin wzo + e;l yo(wzo,a')/sine' =0 . (5.95)

FCO

=CO0 <C
1 F

Again, the constants { 2 s F3°, FZO} can be modified in two ways.

That is, one can obtain {an, ghe} from (5.70) and (5.73), or one can

~

first express {sao, ghe}

ao hg} which satisfy Equations

in terms of {w_, w

(5.94) and (5.95).

E. MODIFICATION OF REFLECTED AND DIFFRACTED SURFACE WAVE FIELDS
(OBLIQUE INCIDENCE)

Since the expressions for the reflected and diffracted surface wave

fields are given in terms of {w:e, w:e, wgo, wgo} only (see Chapter IV),

it is very simple to modify them. The only modification that is needed

ae  ho he

ao .
s » W » W and W, be the roots of Equations

(5.82), (5.83), (5.94) and (5.95), respectively. This is the same

is to let the constants w

procedure that was followed in Section B.4 for the special case of

normal incidence.
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CHAPTER VI

THE DIELECTRIC/FERRITE HALF-PLANE PROBLEM

A. STATEMENT OF THE PROBLEM

The solutions for the even and odd dielectric/ferrite bisection
problems were obtained in Chapter V by modifying the solutions of
Chapters III and IV, As shown in Chapter II, once the even and odd
bisection problems have been solved, it is very simple to get the
so]ﬁtion for the dielectric/ferrite half-plane problem depicted in
Figure 2,1. It is shown in Chapter II that the total field for plane

wave excitation can be expressed as follows:

>

E(p,6,2) = 1/2 E%(p,|6],2) + 1/2 E%(p,]8],2) sign (8) , (6.1)
0<9o' <
-T< o<
0<¢' <
> *a *q - .
H(p,4,2) = 1/2 H-(p,|0],2) + 1/2 H (p,]6],2) sign (¢) , (6.2)

where the angles ¢,¢' and 8' are shown in Figure 2.1. Note that by
combining the even and odd sotutions, which are restricted to the
half-space 0 < ¢ < w, their sum turns out to be valid in the entire

space -w<¢<n, As mentioned before, it is assumed that there is only one

diffracting edge.
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B. GEOMETRICAL OPTICS FIELD

As shown in (6.1) and (6.2), the geometrical optics fields can be

written as follows:

G 3 At ik, z \
£00(6,0,2) = £ @7 KOO T yagp)
| §§+§g ik'z
+E, 5 e KR0S T2 y(agog)
R€_po
e ik, z
e e R R A ) (6.3)

. ) ik_z
190(p,0,2) = H,, e7TKPEOS(48) o2

» ¢y T+é-¢')
E§+Eg 1
. ' ik_z
tHy T2 e Tkpcos(4407) ¢ 2% y(n_pogt)
né 0
"R ik.z
+ Hcy — e-1kpCOS(¢'¢ ) e 2 U(¢'-m-9) . (6.4)

To write the GO fields in standard form, i.e., in terms of dyadic
reflection and transmission coefficients, it is necessary to define a
"ray-fixed" coordinate system [2,19] which is depicted in Figure 6.1,
The unit vector 6 is normal to the surfate at the point of incidence,
gi is the incident unit vector, and ;r is the reflection unit vector
from the point of reflection to the observation point. The unit vectors

u}, u;, and u, are defined the following way:
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" . r'
ul/fs' uy
—. "
E . Uy Ar
u! \S
1] g

Figure 6.1,

Ray fixed coordinate system used for 3D reflection and
transmission,

233



al - al

Aj S X (n xs)

Uu = A Al (6.5)

In x s |
Ar ~ Ar

ap S X (n xs)

uy = A (6.6)
[n x s |

- _ A.i A.i _ Ar Ar

Up Sup X s =upxs . (6.7)

Note that (1) and (®#) indicate vectors perpendicular and parallel,

respectively, to the plane of incidence which is the plane containing
A.i A 3 A

s and n, The unit vectors (51, u}, “1) define an orthonormal
coordinate system for the incident and transmitted fields. Likewise,
the unit vectors (sr, u:, ul) define an orthonormal coordinate system

for the reflected field.

It is shown in Appendix K that the fields (E}’r, El’r, E;’r) can be
expressed in terms of the E;’r and H;’r fields as follows:
E's =0 (6.8)
3
. _
Esr =0 (6.9)
Ei
i y
E} =TT (6.10)
In x s |
) no H;
E, = (6.11)
In x s |
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-

L In x s']
Er‘
P—

' |n x s'|

(6.12)

(6.13)

&>
In vector form, the reflected field E" can be expressed in terms of

the dyadic reflection coefficient R such that

- >3 = sl
+ul EF = BN (R) R e'KS

where s” is the distance from the point of reflection QR to the

observation point. The incident field é1(QR) is given by
> ~ i A
E'(QR) = uy Ey(QR) +u, E\(OR)

which is evaluated at QR.

reflection coefficient can be written the following way:

s ey I [T |
R = Uy uy R™ + uguy R
where
Ra+Ra
1
R =
2
-e . o
ht Ry
1
R = .
2
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(6.14)

(6.15)

It is shown in Appendix K that the dyadic

(6.16)

(6.17)

(6.18)



The transmitted field can also be expressed in terms of a dyadic

transmission coefficient ? such that

t

>. ~ LY »> - 3
Et(st) = u, Ei + u} E: = E (QR)-T elks (6.19)

where st is the distance from the point of incidence QR to the point of

observation and

=—'..i A.i “ ~ ~ .L
T=upu, T + uy Uy T (6.20)
where
e &0
n Ra - Ry
T =—— (6.21)
2
e~
Rh - Rh |
te—m-+— ) (6.22)
2

The reflection coefficients R", Rl and the transmission
coefficients Tn, Tl are depicted in Figures 6.2 - 6.5, respectively, for

five different combinations of €. and u

re v
(1) €. = 2.(1.+i10.05) . = 1.(1.+i0.)
(2) €. = 3.(1.+i0.) e = L.(1.+i0.)
(3) €. = 3.(1.+i0.1) . = 2.(1.+0.1)
(4) e, = 3.(1.+i0.05) M. = 4.(1.+10.05)
(5) e, = 4.(1.+i0.1) M. = 4,(1.+i0.1) .

In all1 five cases, 98'=w/6 and d=0.005AX.
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0.

Magnitude of Reflection Coefficient R’

Figure 6.2, Reflection coefficient of Rn.
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Phase of Reflection Coefficient R' (Degrees)

Figure 6.2, (continued)
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Magnitude of Reflection Coefficient Rl
Figure 6.3, Reflection Coefficient Rl.
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(continued)
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Figure 6.4, Transmission Coefficient T'.
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(continued),
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Figure 6.5. Transmission Coefficient Tl.
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Figure 6.5. (continued).
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C. DIFFRACTED FIELD

The diffracted H‘Z’ and ES fields for the dielectric/ferrite
half-plane can be obtained by adding the even and odd solutions and then

dividing by 2, that is

1 1
E3(0,0,2) = 7 ESS(0,19,2) + 3 ES°(0,14],2) sign(e), -medern (6.23)

: 1 1
K (p,0,2) = 7 K3 (o, 101,2) + 2 H(0,]0],2) sign(e), -meecr. (6.24)

In order to express the diffracted field in terms of a dyadic
diffraction coefficient, it is necessary to define a suitable coordinate
system. It is mentioned in [11] that the correct coordinate s
the ray-fixed coordinate system depicted in Figure 6.6. The plane of
incidence for edge diffraction, which is simply referred to as the
edge-fixed plane of incidence, contains the incident ray and the unit
vector é tangent to the edge at the point of diffraction QE. The plane
of diffraction contains ; and the diffracted ray. The unit vectors é;
and éo which are parallel to the edge-fixed plane of incidence and the

plane of diffraction, respectively, are given by

Bo = A Al (6.25)
le x s |

- -s x (e xs)

0 = A (6.26)
le x s|

245




PLANE OF DIFFRACTION
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—>~y
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INCIDENCE

OBSERVATION
POINT (P)

>

Figure 6.6, Ray fixed coordinate system used for 3D diffraction.
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al
where the unit vector s 1is in the direction of incidence, and the unit
A Al ~
vector s is in the direction of diffraction. The unit vectors ¢ and ¢
which are perpendicular to the edge-fixed plane of incidence and the

plane of diffraction, respectively, are defined as follows:

al al al

¢ =8B, xS ' (6.27)
=8 Xxs . (6.28)

0

It is shown in Appendix L that

E l= ] (6.29)
¢ sing
o
Ei
i z ,
EB' =" (6.30)
o s1n80
Eg =0 (6.32)
d
d non
E¢ = (6.33)
s1n80
-E‘;
E(é - — . (6.34)
0 sinB0
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Rewriting the diffracted field in terms of the dyadic diffraction

coefficient 5, one gets
iks
d d €

-~ >3
$E, + By Eg = E'(0E) -
$ Bo /3

Ed(s) -

[wo B 1

(6.35)

where s 1is the distance from the point of diffraction (QE) to the

observation point, and

E(QE) = & EL.(0E) + B, EL (08 (6.36)

As shown in Appendix L, the dyadic diffraction coefficient can be

written as follows:

= _ Al A ~d Al A 1 ~d Al a 1 ~d Al a ~d
D =¢¢Dyy -8, 6 cosB D, - ¢ B cosg D, + B8 8 Dy (6.37)
where
~d oy 1| nhi Lot i
(161,',0") =7 | DOL([8],6',8") + DOl ([o],8',08")signe |, i=1,2
- ~ (6.38)
~d ooy o L rai Vo -
Dai(lel,0',0") =7 | D  (l¢],¢",0") + D |¢| ¢',0")sign¢ =1,2
- . (6.39)
Note that the diffracti fficients {p"1, oM, p? Da‘}2 are
e al raction coetrricients ze? 70° 70 =1

defined in Equations (L.31)-(L.49) in Appendix L. Furthermore, the

]
angle of diffraction B, s equal to the angle B, as predicted by
Keller's law of edge edge diffraction_tll]. The latter can be expressed

mathematically as

Al A

See=5 e . (6.40)
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Equation (6.40) is used to find the point of diffraction QE for a given
point of observation away from the edge and a unit vector g'. In some

cases this must be done by a computer search procedure as shown in [48],

D. SURFACE WAVE FIELD EXCITED BY A PLANE WAVE (OBLIQUE INCIDENCE)

As mentioned in Chapter V, the parameters of the dielectric/ferrite
half-plane are adjusted such that only the lowest order even mode can
exist. This implies that only the fields E;: and H;: given in Equations
(5.74) and (5.87), respectively, are allowed to exist. Therefore, the

total surface wave field can be expressed as

1 d

Y =7 Ep (Iylaente) vl > 72 (6.41)
Y = 2 1Y (lyl.4,'e" g 6.42
y -?Hye (|y|’¢’e) s |y|>-2l . (o )

'In general, the TEy and TMy fields have different propagation and
attenuation constants. Thus, assuming Qw is the point where the surface
waves are launched, they will propagate in different directions as shown

in Figure 6,7. Note that 83 and Ba are always bigger than Boe However,

>

83 can be larger or smaller than 8, depending on the parameters of the

W
dielectric/ferrite half-plane,
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Figure 6.7.

b 3

Edge excited surface waves E;w and ij where

' G W
Bo < Ba» By < Bp.

It can be shown that, for a given point of observation and unit

vector s', one can determine the point Ow and the relationship between

the angles 80

w
]
14
1]

where w i
g1 s
direction of

and g is the

and 8" from the following equation:

S; ce-= 2 A2 2 172 (6.43)
[cosh (W) - (s'+e) sinh (wsI)]

the imaginary part of Wee The unit vector sz is in the

propagation of the surface wave fields from the point Qw’

unit vector in the direction from the point Qw to the point

of observation. That is,

‘ww
S =
P~ %

sin g% + é cos 8" (6.44)
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~

¢ =psing¥+ecos g" (6.45)

pw =xcosw__+ysinw

; s s o T W <32 (6.46)

A

p = X cos¢ + ; sin ¢ (6.47)

where W is the real part of Wee

Note that the expressions in Equations (6.41) and (6.42) are valid

outside the dielectric/ferrite medium.

E. REFLECTED SURFACE WAVE (OBLIQUE INCIDENCE)

As in Section D, only the even reflected surface wave field can

propagate in the dielectric/ferrite half-plane, The total E;Sw and H;Sw

fields are given by

Y - Epa (lolwg®e)  ,  mcocn (6.48)
HMSY - "-W (lo].w'€,8') , -m<p<m (6.49)
y s

where Ersw and H;:w were defined in Equations (4.162) and (4.184),

:e and w:e are the roots of Equations

respectively. Furthermore, w
(5.82) and (5.94), respectively, It follows from either (4.162) or
(4.184) that the propagation and attenuation vectors for the incident
and reflected surface wave fields are given by

i i ~wi . Wi cwi
pwi kw1 wi

= p sp + i ka Sa (6.50)
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for the incident fie]d, and

PWP _ (WP “wr . WP wr :
KW o= kp Sp +1 ks, (6.51)

for the reflected field, where

W 2 2 2 v 1/2 6 5

kp = k(sin B, cosh w. + cos B) (6.52)

W o . '

ka = -ksin 8, sinh W . Wy < 0 (6.53)

Aw.i . 1 -~ A . - !

s, =sin B8 (-xcosw. _+ysinw ) +ecos 8 s

P 0 sr sr o] (6.54)
T < Wer < 3n/2

QWi = -; sinw__ - ; CosS W (6.55)

a sr sr ¢

T Bl (; cos w__ + ; sin w__) + e cos B' (6.56)

p 0 sr sr 0 *

hwr ~ . )

S, =X sinwg -y cosw, . (6.57)

The angle 80 is depicted in Figure 6.8. It is easy to conclude by
studying Equations (6.52)-(6.57) that the angle of incidence is equal

to the angle of reflection such that

(-531) . (-;) = cos 8, = -cos W . sin B, = ;gr e (-x) (6.58)

where the angle of incidence ew is depicted in Figure 6.8. It follows

from (6.58) that

1
%w = arccos [-cos(wg ) sin 8 ] T < W < 3n/2 (6.59)

’ S
0<e'w<1r/2
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Figure 6.8, Reflected surface wave field.
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F. DIFFRACTED SURFACE WAVE (OBLIQUE INCIDENCE)

The Ey and Hy diffracted surface wave fields for the

dielectric/ferrite half-plane can be expressed as follows:

dsw dsw dsw .
Ey (p,¢,2) = Eye (p,l¢’,Z) + EyO (pyl¢laz) s1gn(¢) s =M < p <

(6.60)

dsw

= dsw
(p,¢,Z) = Hye (D,|¢I,Z) + Hy

d o
Hysw o (py10],2) sign(s) , -m < ¢ <

(6.61)

d d d d . .
where {Eyzw, Eygw, Hy:w, Hygw} are given by Equations (4.163),(4.181),

(4.185), and (4.167), respectively, with the modifications indicated in
Section E of Chapter V.,

An equation similar to (6.43) can also be obtained for this case.

It is easy to show that

A 1’ ~
(cosh W) (S: . e)
Sd

e e 3

= n 6.62
(1 + (s‘;1 . &) (sinh’ wsI))”2 (6.62)

where s~ is the unit vector in the direction from Qw to the observation

point, as depicted in Figure 6.9.
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(Eg'*, Hg")

Figure 6.9. Edge diffracted surface wave fields E;SW and H;SW.
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G. LINE SOURCE EXCITATION

Consider the geometry illustrated in Figure 6.10 showing a line
source radiating in the presence of a dielectric/ferrite half-plane. It
is assumed that the line source is far enough from the edge so its field
can be represented by a cylindrical wave. The total field at the
observation point (P) can be expressed as the sum of the incident,

reflected, transmitted, diffracted and surface wave fields such that

u(pyd) = u'(5,0) + u(p,8) + ud( W

pyd) + U (p,0) (6.63)

Note that u represents the electric field if an electric line source is

‘used, or the magnetic field, if a magnetic line source is present,

« % REGION I
~ 4‘.«2 LINE
OBSERVATION \6‘0’ SOURCE
POINT NS Io

[
[
|
!
REGION I < ¢ |
N
A~ 1'.1
VIISIIIINNITIRTBNIATEANIINIRITIIRINNIN ININS. ] —
N 7 (QE) rox
THIN DIELECTRIC/FERRITE g ~ N\ !
HALF-PLANE S/ N |
7 A I
S /A ~ ~
REGION II S ~ |
) ~ i
L7
O, o ~
NI ~N
IMAGE

Figure 6.10, Line Source Excitation
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Using the’same notation as in [2], the individual terms in (6.63) may

be expressed as follows:

Jiks’
j Io : Regions I and II
u'(P) = Al (6.64)
0 Region III,
B N eiksr
I R Region I
u"(P) = | ° 0 LF (6.65)
0 Region II and III,
B iksi
e
+ 1.7 Region III
GRS A (6-68)
0 Regions I and II,
and
I"1 . B Jike
u(p,0)=u (0E) | Z DT (10].6") + 7 O2(16],8")sin(8) s -rean
P

(6.67)

where s' is the distance from the source to the observation point and s"
is the distance from the image point to the observation point. The
diffraction coefficients 52 and 5g‘are given in Equations (5.46) and

(5.47), respectively, except that the L parameter becomes [11]

L=, : (6.68)

where s' is the distance from the source point to QE.
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The incident field evaluated at QE is

. eiks'
U‘(QE) = IO /31- (6.69)

where I0 is an arbitrary constant.

The reflection and transmission coefficients are given by

=
n
|

1
> [R® (3) + R° (3)] (6.70)

T == [R® (3) - R® (3)] (6.71)

~N

where R® and R° are defined in (5.16) and (5.20), respectively, for an
electric line source, If the source is a magnetic line source, R® and
R® are defined in (5.17) and (5.21), respectively.

Since it is assumed that'only the lowest order even mode can

propagate in the half-plane, uY s equal to

uSW(

1 ~
X,y) = §'u1(QE) ng(¢',w§) exp [ik(xcoswg + |y|sinw§)] U(¢-¢§),

d
lyl » 2 (6.72)

where L;Z is defined in (5.52).

In Chapter VIII, where a dielectric/ferrite slab is considered, the
fields excited by the geometry illustrated in Figure 6.11 will also be
needed. As shown in [21,49], the total field is the sum of the
incident, reflected, transmitted, surface wave, and leaky wave fields,
The last two fields are pole wave contributions, so they will exist only
if the poles are captured when the original contour of integration is

deformed to the steepest descent path in evaluating the integral
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representation for u, The surface wave field (lTowest order even mode)

outside the dielectric/ferrite medium can be expressed as follows:

u?:,y) = 2ni e'™/4 I, F(w,) exp | ik[(]y|+h-d) sinw, * xcosw ] | ,
d
lyl > 7 (6.73)
where
_e e
sinw +i l P_l Y(w,) tan{y(w,) kd/2] L
Mo H_|
z
cosw - i er-l kdsin(2w, )| tan[y(w )kd/2] |_Z
-1 4 y(w_) kd/2 + sec [Y(Ws)kd/2]
e S 3
(6.74)
and
2 2. 1/2
v(wg) = (N - cos w) . (6.75)

- L
ﬁ
)
RS
—

LINE SOURCE

T—_ %o
S | I S (S
TR —

+

d d/2

Figure 6.11. Surface waves excited by a line source above a
dielectric/ferrite slab.
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CHAPTER VII

MOMENT METHOD

It is crucial to ascertain the validity of the UTD solutions
presented in the previous chapters. The geometry used to test the
validity of these UTD ray solutions is a dielectric slab of finite
width, which can be excited by a line source or an obliquely incident
pIane wave because the latter goemetry can be analyzed via the moment
method., A brief description of the development of the moment method
solution to this problem will be given in this chapter, For a more
general and complete treatment of this method refer to [50].

The technique employed here is an extension of the one developed by
Richmord [51,52] for the case where the incident field is normally
incident to the edges of the slab. In the more general case of oblique
incidence (plane wave excitation) the problem is more complicated, but
the solution proceeds in a similar manner. The die]ectric material is
assumed to be Tinear, isotropic, nonmagnetic (u=pg), and homogeneous

(e=constant),
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This technique is based on the integral equation for thg total
field excited by a source in the presence of the dielectric slab
[51,52].

Assume that the field (Ei, ﬁi) is incident on a dielectric material
as depicted in Figure 7.1. Let (E,ﬁ) represent the total field; that
is, the field excited by the incident field in the presence of the
dielectric object. The difference between the total and incident fields

> *
is usually referred to as the scattered field (ES,HS). Thus,

i >
E=f 4S5 (7.1)
H=h+ 05 . (7.2)

(?g.')\.\

(eo,‘uo)

(ES.H%)

+o *t
Figure 7.1. Plane wave (E’,H1) incident on a dielectric object.
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It is assuemd that the medium exterior to the dielectric obstacle is
free space. It follows from Maxwell's equations that the scattered'

> >
field (ES, H%) may be considered as the field generated by an equivalent

ES
electric current J radiating in unbounded free space, where

> . +> . > ’

J = -1m(e-eo) E = -1kY0(er-1) E (7.3)
and w is the angular frequency. This current is usually referred to as
the volume polarization current.

The dielectric slab in this problem is a two-dimensional object,

1 ]
and since the incident field has an e KC0S®'Z

variation, the
polarization current and scattered field will also have the same
s . -ikcos9'z .
variation along the z-axis. Except for the e factor, this
problem is still considered a two-dimensional problem.
>
The scattered field E° can be expressed in terms of the electric

dyadic Green's function as follows [53]:

EY
s > . =0 > +J
E>(p)= ikn_ Lim | g_  J dA' + 3 (7.4)

0 e iky

=

where AJ and A6 are depicted in Figure 7.2, The area AG’ which excludes
the singularity of Eg is called the "principal area". It becomes
infinitesimally small in the limit as its maximum chord length §
approaches zero. Since the value of ; and the integral in (7.4) depend
on the geometry of A, [53], the area As‘is assumed to be a circle here,

The electric dyadic Green's function is given by

1 ”,

- i =
Ceg(Togw M-t . 5+b

e

(7.5)
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. >
Figure 7.2, Polarization current J replaces dielectric object.

where
f=;;+§§+£§ (7.6)
K = ksine' (7.7)
- a A a ~ ' X
VExgty 3}-+z1kz . (7.8)
Substituting (7.3) and (7.4) into (7.1) yields
> > 2 . =0 * +| , = > +1- +>
E(p) - k (6,.-1) Lim | 9, ° E(o')dA" + (er.-l) 2« E (p) = E'(p)
§+0 AJ-A5 :
(7.9)
where the dyadic term & is equal to [53]
= 1 -~ -~ ~ A
2=7 (x x +yy) (7.10)
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when A‘s is a circle. The integral Equation (7.9) is solved numerically

using the moment method.

The first step in the solution of (7.9) is to divide the dielectric
slab into square cells (see Figure 7.3) small enough so that the
electric field intensity is nearly uniform in each cell. This is

N
equivalent to choosing the pulse functions {fn(;'}n=1 as the basis

functions, That is, let

() = L Ep F(61) P = X,Y,2 (7.11)
n=1
where
fn(;') _ 11 incelln (7.12)
0 elsewhere

and {Epn} are unknown coefficients.

y
L
f
-+
1
H

T ! 1
[} oee . m Imel

- o - - e ] ———
{ [ B
1 ees [} .

-d. A r

N m™ ceLL
\_Asm ] — CENTER OF m'h CELL

(X g Yo

Figure 7.3. Dielectric slab divided into square cells.
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In order to obtain a system of linear equations to solve for {Epn}2=1’

it is necessary to define a set of testing functions. Here, the Dirac
"delta" functions {6(x-xn)6(y-yn}x=1 are choosen as the testing
functions. This is equivalent to enforcing the condition that at the
center of each square cell, the total field must be equal to the sum of
the incident and scattered fields.
Substituting (7.11) and the testing functions into (7.9) and
th

enforcing Equation (7.9) at the center of each m " cell, the following

set of 3N simultaneous equations with 3N unknowns is obtained:

N .
i
_X, {Amn Exn * B Eyn * Con Ezn} = Egm > m=1,2,0..,N (7.13)
n=1i
N i
n§1 { mn Exn Pmn.Eyn * Fon zn} = Eym , m=12,...,N (7.14)
N i
n§1 {Cmn Exn ¥ an Eyn * Mon Ezn} =Em ., M= L2,.N (7.15)

k2o 7
z P (1) (7.16)

+ K HO (KPX_
By = B = RO {(x-x ) (v, ) (24, ) (ko) = KoM (ko) T} (7.17)
¢, =R f-ik, 0 (x %) HB (ko)) = - ¢ (7.18)
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~ 2 2 2
P = R | Kolxox,) M (ko) + Llymy)® = (xoxy) THER) (ko) -
2_-3
“z° (1) y
+ Hy'(Ke) | = P (7.19)
cen ]! 2. (1) | .
an = K —1kz (ym-yn) o H1 (kp) { = -an (7.20)
_ T 3 (1) -
an =K' p K H(,J (Kp) = Mnm (7.21)
3
Rt = -imaJ, (Ka)(e.-1)/(20 ) (7.22)
e 2 27|1/2
p = (Xg=xg) + (¥-¥p) . (7.23)
For m = n
Bmm = Cmm = me =0 ’ (7.24)
Mo = 1 = 1 (e,-1)72 | wka H{V (ka) + 2i (7.25)
€1 i(er-l) " 2k;2
Pmm=Amm=1+2 -T2 ! 1rKaH1 (Ka) + 2i I+ =5
(7.26)
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Note that it is not possible to obtain a closed form result for the
integral of the Hankel function over a square cell. However, a simple
solution is available if the region of integration is a circle [51]. It
has been shown [51] that the error in approximating square cells with
circular cells of the same cross section area as shown in Figure 7.4 is
very small,

Once the 3N simultaneous equations are obtained, they can be solved
with the aid of a digital computer to evaluate the electric field at the
center of each cell. Note that by inserting the appropriate equations
for the incident field, one obtains solutions for any two-dimensional
source (line source, array of line sources, plane wave) in the presence
of the dielectric slab., Furthermore, the solution approaches the exact

solution if a sufficiently large number of cells are employed [51].

Figure 7.4, Square cell is replaced by a circular cell of the same
area,
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Assuming that the simultaneous equations have been solved, the

scattered fields Ei and H; are given by

E>(5,6,2) = i(e.-1) (-mi/2)1/2(Ka)J; (Ka)

o, * (sine -y /o )Eyn]

N '
'% E,n = (k,/K)(o /0, )[(cosé - x /o, )E, o

. exp(1'Kpn+1‘kzz)/(l(pn)1/2 (7.27)

Hy(p,8,2) = -1 (-ni/2)}/2(Ka)dy (Ka) (e 1)

N - _ ' -
! . )

’%=§°o/°n)l(51”¢ - yn/po)EXn - (cos¢ - xn/po)Eyn exp(iKp + ik 2z)

- - 1/2
(Kep)
(7.28)
where
2 2_1/2

P = [ix=x)) +(y -y, ] s ey = (k24 y2)/2 (7.29)

As mentioned by Richmond [52], in order to obtain accurate results,

the dimensions of each cell should not exceed

¢ 0.2
X <

/E; (7.30)

where ¢ was defined in Figure 7.4,

268




To calculate the elements of the impedance matrix, it is necessary

to evaluate the following two integrals:

~ a 2" (1)

11 = Lim | | Ho (Kp') p'dp' d¢' , a >0 (7.31)
b+0 b 0

~ a 2w '

=1 H((,l)('(lz-z'l) o' do' d¢' , ' <ac<p . (7.32)
0 0

By using the integral tables in [54], the integral in (7.31) can be

easily evaluated. One gets

~ 2 (1) .
I1 = 2 [r Ka H1 (ka) + 2i] , a>o . (7.33)

The integral in (7.32) can be evaluated by first using the addition
(

01)(K|3'3'|), and then integrating term by

theorem for the function H
term, After some simplification, one obtains

2ma

fz = ¢ Jp(Ka) Hél)(Kp) ’ ac<op . (7.34)
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CHAPTER VIII

RESULTS AND DISCUSSION

As stated in the previous chapter, it is important to ascertain the
validity of the UTD solutions developed in Chapters III through VI. The
dielectric/ferrite ‘strip geometry shown in Figures 8.1 and 8.2 has been
choosen for this purpose. The fields scattered by the strip are then
calculated using the UTD solutions as well as the corresponding MM
solutions discussed in the previous chapter. The results obtained by
these two distinct methods are shown to agree very closely, which gives
a good indication of the accuracy of the new UTD results.

The scattering and diffraction of an object which is large in terms
of a wavelength is essentially a local phenomenon associated with
specific parts of the object [6,7,8,10,59]. Therefore, the UTD results
obtained for the dielectric/ferrite half-plane can be used to analyze
the strip as long as the width of the strip is geheral]y more than about

one wavelength [10].
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Figure 8.1. Plane wave exci
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Figure 8.2. Line source excitation.

The total field at a point of observation (P) is equal to the
superposition of the following field components as depicted in Figure
8.3.

(I) Direct field from the source

(IT) Reflected field from the finite dielectric/ferrite strip

(III) Transmitted field through the finite dielectric/ferrite strip

(IV) Edge Diffracted fields from both edges of the strip

(V) Edge diffracted surface waves

(VI) Reflected surface waves which are subsequently diffracted by

the opposite edges of the strip.

If additional terms are needed, one can add them to the solution;

however, as will be shown in the examples, the six field components
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(VI) Reflected surface waves which are subsequently
diffracted by the opposite edges of the strip.

Figure 8.3, Field components that contribute to the total field at the
observation point.
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listed above are more than sufficient for the problems considered here.
Because the total field is obtained from the superposition of the
various field components listed above, UTD provides a very valuable
physical insight into the radiation and scattering mechanisms involved.
Furthermore, the UTD solutions for the problems developed here (Figures
1.2 and 1.3) serve to extend the applicability of the UTD method to
analyze the radiation and scattering by complex structures containing
dielectric/ferrite panels. It is noted that UTD can solve high
frequency radiation and scattering problems (for which exact analytical
solutions are not available) once the pertinent UTD diffraction
coefficients are known for that problem.

In order to provide a more stringent test on the validity of the
results obtained here, the scattered field is calculated instead of the
total field. The reason for this is that the direct source field is
usually much stronger than the‘other field components and could possibly
conceal errors in the scattered field.

> >

The scattered fields (ES,HS) are easily obtained from the total

fields (E,ﬁ) as follows:

~

> >,
E - E' : (8.1)

>

ES

+S > >,
HS = H - H (8.2)

> >
where the fields E'and H'are the incident electric and magnetic fields,
respectively, in the absence of the die]éctric/ferrite strip. Most of
the results shown here will be the scattered fields, except for a few

results where the total field will be calculated.
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Al fhe patterns shown here are calculated in the x-y plane shown
in Figures 8.1 and 8.2 where the point of observation (P), which is at a
distance p from the origin, rotates clockwise from =0 to ¢=2m. Note
that for the case of oblique incidence (6'#n/2, plane wave excitation),
the field evaluated at a given x-y plane (z=zo), differs from the
field evaluated at another x-y plane (z=zl) by the factor
exp(-ikcose'(zl-zo)). For the case of line source excitation depicted
in Figure 8.2, the distance from the origin to the 1ine source is p'.
The dielectric/ferrite strip has a width ¢, thickness d, with a
relative permittivity €ns and relative permeability Mo Throughout this
chapter, unless otherwise stated, only the magnitude of the calculated
fi

tds will be plotted. A e, a heuristi

w
&

suggested by Burnside [2] to solve the dielectric strip problem by
modifying the solution pf the perfectly conducting half-plane. This
heuristic solution does not include surface waves, reflected surface
waves, or diffracted surface waves. This solution will be referred to
as the old UTD solution. Figures 8.4-8.6 depict the total field of a
-1ine source in the presence of a lossless dielectric strip computed by
three different methods. Note that new UTD solutions developed in this
study are the ones that were obtained by modifying the impedance
bisection solutions using the "second approach". That is, the GO fields
are the exact fields, while the diffracted fields were obtained by
heuristically modifying the impedance half-plane diffracted fields using
the UTD recipe. Furthermore, the surface wave reflected and diffracted
fields were obtained from the impedance bisection solutions by replacing

the impedance surface wave propagation and attenuation constants by the
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Figure 8,5, Magnitude of the total Hz field for the geometry shown in

Figure 8.2,
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more accurate corresponding exact coefficients for the grounded
dielectric/ferrite slab.

It is obvious from Figures 8.4-8.6, that there is better agreement
between the new UTD and MM solutions than between the old UTD and MM
solutions. In Figures 8.4b-8.6a, where the angle of incidence is either
30 or 10 degrees, there is a big improvement with the new UTD solutions,
especially around 180 degrees, where the diffracted surface waves play
an important role. However, even in Figure 8.4a, where the diffracted
surface wave is not important, because the angle of incidence is 90
degrees, the new UTD solution seems to agree more closely with the MM

solution. This means that not only is there an improvement in the new

results than the old ones. In Figure 8,6b where the electric line
source is only 0.25) away from the middle of the slab, there is a big
disagreement between the old UTD and MM solutions, especially around 0
and 180 degrees. The reason for this disagreement is that the line
"source excites two surface waves which travel in opposite directions
toward the edges of the strip (see Figure 6.11) where they are
diffracted. Since the amplitude of the surface wave is inversely
proportional to the distance of the line source from the strip, these
surface wave contributions become important for p'=0.25)A. Since the new
UTD solution includes these contributions, it agrees very well with the
MM solution as shown in Figure 8.6b,

In Figures 8.7a-8.8a, the total field of a magnetic line source is

depicted for increasing values of the electric loss tangent, and for the
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case where the angle of incidence is 15 degrees. In Figures 8.8b-8.9b,
the angle of incidence is 10 degrees, and still there is very good |
agreement between the new UTD and MM solutions. Figures 8.,10a-8.13b
show the total field of an electric line source for different values of
the electric loss tangent, angle of incidence, and length of the strip.

As the angle of incidence becomes smaller, the diffracted surface
waves become significant. For example, in Figure 8.13a, the total field
of an electric line source is depicted without the diffracted surface
wave fields. Since the angle of incidence is only 1 degree, the new UTD
solution without the above surface wave contribution is not very
accurate, epecially around 180 degrees where the diffracted surface wave
is important. When the diffracted surface wave is added, the two
solutions agree very well everywhere, except near 180 degrees as
illustrated in Figure 8.13b. When the angle of incidence becomes
smaller, not only does the diffracted surface wave become important, but
the doubly edge diffracted field also becomes significant. The doubly
edge diffracted field is the field diffracted from the second edge after
being diffracted by the first one as depicted in Figure 8.14. This
field diffracted by the first edge at near grazing angles of incidence,
which is then incident on the second edge, is in general not a ray
optical field. Consequently, its diffraction by the second edge must be
handled carefully near the forward scatter direction. The present UTD
solution does not include this doubly edée diffracted term; however, it
will be added in the future. It can be shown [55] that as the length of
the strip increases, this doubly edge diffracted field becomes less
important.
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Figure 8.14. Doubly Edge Diffracted Field.

Even though there is an improvement when the diffracted surface wave is
added, the agreement between the UTD and MM solution is not perfect due
to the absence of the doubly edge diffracted field. In Figure 8.15a,
the dielectric strip becomes lossy and the diffracted surface wave
becomes less important. However, the doubly edge diffracted field is
still important, and its absence causes the disagreement between the new
UTD and MM solutions around 180 degrees. Additional plots are depicted
in Figures 8.15b through 8.17b for three different lengths of the

dielectric strip.
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So far, the total field of a line source in the presence of the
strip has been calculated for various angles of incidence. It is
obvious that the incident field is the dominant term, and in order to
very carefully test the accuracy of the new UTD solutions, the scattered
field should be calculated instead of the total field. From now on,
only the scattered fields will be shown, unless otherwise stated, The
electric scattered field ES and the magnetic scattered field ﬁs were
defined in Equations (8.1) and (8.2), respectively. Note that the
incident fields defined in these equations are the fields that would
exist in the absence of the strip.

Figures 8.18a and 8.18b depict the field scattered by a dielectric
Strip for an El-po]arized jncident plane wave where ¢'=65° and 8'=45°,
The scattered Ez field is shown in Figure 8.18a. Since 6'¥90°, there is
coupling between the E; and H: fields. Figure 8.18b shows the noHi
field, which as expected, is not zero. Figures 8.19a and 8.19b depict
the scattered H; and YoEz fields, respectively. The incident field is
H;-polarized, where ¢'=65° and 8'=45°, Again, since 9'¥90°, there is
coupling between the Hz and Ez fields. Figures 8.20-8.25 show
additional examples where 8'%90°,

Figures 8.26a and 8.26b depict the field scattered by a strip
where the line source is at a distance of 7A and 15X, respectively, from
the center of the strip. Figure 8.27a shows the field scattered by a
dielectric strip of length 5\ and er=5.0+10.5, “r=1’0' The source is a
magnetic line source located at a distance of 15\ from the origin. In

the Figure 8.27b the source is also a magnetic line source, however, the
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strip is a ferrite with u.=3.0+i0.3, ¢.=1.0. The length of the strip is
1=5X and its thickness d=0.1x. Figures 8.28a and 8.28b depict the HS-
scattered field where the incident field is a H;-polarized plane wave,
The values of ¢', and 8' are 45 and 90 degrees, respectively, and as
expected, in both cases the field E; is zero.

Figures 8.29a through 8.29c show the E;-field scattered by a
dielectric strip for increasing values of the electric loss tangent.
The incident field here is an E;-polarized plane wave where ¢'=90° and
8'=90°,

As mentioned several times already, the total or scattered field
can be obtained by adding the different terms depicted in Figure 8.3.
In other words, UTD is a method in which rays are employed in a
systematic way to obtain the field at a given observation point. For
example in Figure 8.30a, there is an Ei-polarized plane wave, incident
on a lossy dielectric strip where the angle of incidence ¢' is 45
degrees and 6'=90 degrees. In order to obtain the total field, the
first four terms shown in Figure 8.3 are added together. Next, the
scattered EZ-fie]d which is shown in Figure 8.30a has been obtained by
subtracting the unperturbed incident field EZ from the total field. It
is obvious by observing Figure 8.30a that the agreement between the UTD
and MM solutions is not good. Thus, the next step is to add more terms
to the UTD solution. The field obtained by adding the diffracted
surface wave (field component V)Ap1us the diffracted-reflected surface
wave (field component VI) is shown in Figure 8.30b. Note that this

field is important in the regions around 0 and 180 degrees, which is
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where the UTD and MM solutions disagree. Adding the V and VI terms to
the scattered field one obtains the field shown in Figure 8.3i. As
expected, the agreement between the new scattered field and the MM
solution is much better when the various diffracted surface waves are
added. Additional results where the diffracted surface wave is
important are shown in Figures 8.32 through 8.44 for both, normal and
oblique (on the edge) angles of incidence. Note that the strength of
the surfacé wave excited by a line source radiating‘above a dielectric
slab is inversely proportional to the distance of the line source from
the slab (see Figure 6.11) as indicated by the results depicted in
Figures 4.41 through 4.44,

‘As stated before, the diffracted surface wave is important as long
as the dielectric strip is lossless and the incident field is near
grazing. In Figure 8.45a the scattered field of a lossless strip of
length 2=10X is shown where the source is an E;-polarized plane wave
with ¢'=1° and 6'=90°., The many sidelobes of the field are due to the
interaction between the edge diffracted and diffracted surface wave
fie]ds. When the strip becomes lossy (tan6e=0.25), the diffracted
surface wave becomes insignificant and the scattered field shown in
Figure 8.45b is mostly the contribution from the edge diffracted fields.
The agreement between the UTD and MM solutions is good except in the
region around 180 degrees where the doubly diffracted field is
important, but it has not been included here. One additional example is
shown in Figures 8.46a and 8.46b where the electric line source is 20X

from the origin, 2=16) and ¢'=1°,
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included (see Figure 8.30).
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Figure 8.42, Magnitude of the scattered Ei field with the diffracted

surface wave field E
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dsw

; included (see Figure 8.41).
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Figure 8.44, Magnitude of the scéttered H; field with the diffracted

surface wave field Hgsw included (see Figure 8.43).
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In Chapter II, when the dielectric/ferrite half-plane problem was
being considered, it was first broken down into two problems with '
symmetric and asymmetric excitations. The problem with symmetric
excitation was referred to as the even problem, whereas, the one with
asymmetric excitation was referred to as the odd problem. Note that the
scattered field of the even problem is symmetric with respect to the
x-axis, while the scattered field of the odd problem is asymmetric with
respect to the x-axis. The diffracted field of either configuration is
proportional to the difference in the reflection coefficients between
the grounded dielectric/ferrite slab (Eé,o) and the conductor (Rc=i1).
Thus, by studying the reflection coefficients ﬁé’o and RC one can
hredict whether the even, odd, or both diffracted fields will be the
dominant contributors to the scattered field. For example, in Figure
8.47 the scattered field is symmetric, which means that the dominant
contributor is either the even or odd scattered field, but not both. 1In
order to determine which is the dominant one, the reflection
coefficients for the even and odd configurations have to be examined.

For the even configuration R§=1 and Eé is depicted in Figure 8,48,
For the odd configuration R2=-1 and Eb is depicted in Figure 8.49.

Since R° is very close to -1 for ¢'=45°, the dominant term is the one
corresponding to the even configuration. This can be verified by
calculating the even and odd diffracted fields which are shown in Figure
8.50a. When the permeability is increased to 3.+i0.3, Rg does not
change much, however, Rg is no longer close to -1 and one can expect the
odd diffraction coefficient to become more important. This is confirmed

in Figure 8.50b where the diffracted fields are depicted. As expected,
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depicted in figure 8.2.
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the new scattered field which is shown in Figure 8.51 is no longer
symmetric. This example shows that one can predict whether the even,
odd, or both solutions will be the dominant contributors by examining
the reflection coefficients Eé, Eb, RE, and Rg.

Another application of the solutions presented in Chapters III to

VI is in the calculation of the echo width of two-dimensional targets.

The echo width is defined as follows:

zs|?
e(¢) = lim 2mp 577z (8.3)
proo E

> >i
where E> and £ are the.scattered and incident electric fields,

respectively. Figures 8.52 to 8.55 depict the echo width of a
dielectric strip for various angles of incidence and for both E; and H;
polarizations of the incident plane wave. In all cases the agreement

between the UTD and MM solutions is very good.

Besides the dielectric/ferrite half-plane, UTD solutions are also
directly available for the diffraction by the dielectric/ferrite
bisection problem since the former solution was actually constructed
from the latter. These solutions can be used to obtain the fields

scattered by a grounded dielectric/ferrite slab as depicted in Figure

8.56.
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Figure 8.56. Grounded dielectric slab,

This report has examined the scattering by a thin
dielectric/ferrite half-plane. The half-plane solution was obtained by
appropriately combining the solutions to the even and odd
‘dielectric/ferrite bisection (DFB) problems. BRoth normal and oblique
(or skew) incidence on the edge was considered and it was shown that for
oblique incidence there is coupling between‘the TE and TM fields.
However, for the special case of normal incidence, the TE and TM fields
become decoupled. As stated in Chapter I, this is an important
canonical problem for the UTD, since it extends the UTD edge diffraction
solutions from perfectly conducting to penetrable geometries.

In order to obtain the solution to the DFB problem, the impedance

bisection problem was considered first, The impedance bisection problem

335




(plane wave incidence) was solved rigorously via the Wiener-Hopf '
technique. The Wiener-Hopf equation was obtained by Jones' method [32],
and the Wiener-Hopf factorization was accomplished by following a
procedure similar to Weinstein [37]. The other crucial step in the
solution of the Wiener-Hopf equation is the decomposition of a function.
There is a formal decomposition formula [34], however, for the problems
considered here, the functions were simple enough so that the
decomposition was achieved by inspection.

The solution for the case of surface wave incidence can also be
obtained by repeating the same procedure described above for the plane
wave excitation problem. However, there is a simpler way (which was
used here) of obtaining the former solution from the latter one; namely,
the angle of incidence is simply extended to the complex domain, i.e.,
Brewster angle. From this second solution, the surface wave launching,
reflection, and diffraction coefficients were obtained.

It was important to cast the impedance bisection solutions into the
UTD form involving reflection and transmission coefficients, and also
the surface wave propagation and attenuation constants. Once this was
done, the DFB solutions were obtained in the UTD format from the
impedance bisection solutions as described in Chapter V. These UTD
solutions are valid for illumination by ray optical plane and
cylindrical waves, and also by a surface wave.

A11 of the UTD results shown in this chapter agree very well with
the MM-based solutions, except for the case of grazing incidence and

aspects near forward scatter, where the doubly edge diffracted field
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becomes important. This doubly diffracted field can be obtained by
following a procedure similar to that in [55]. That is, the singly |
diffracted field (diffracted by the first edge) incident on the second
edge can be represented as a sum of ray optical wave components because
it is non-ray optical there, and hence, its diffraction at the second
edge cannot be obtained directly via the use of the above UTD solutions.
However, the diffraction of each of these ray optical components by the
second edge can be calculated by the UTD. This work is worthy of future
investigation.

Another area of future research is to extend the solution to the
problem of the diffraction by an impedance wedge which was initially
deVeloped by Maliuzhinets [24] in 1959. Since his solution is
restricted to the special case of normal incidence, it would be very
useful to obtain a solution to this problem for the more general case of
oblique (skew) incidence on the edge. However, it may be very difficult

to scalarize the original vector problem as it was done here. The

problem becomes even more difficult if one allows the surface impedance

to be a tensor, i.e., anisotropic impedance sheet, in which case an
approximate solution is usually the best one can hope to obtain.

An additional area of future research related to this work is to
extend the solutions obtained here to curved surfaces which have many
practical applications in the analysis of flush mounted antennas,
surface wave antennas and flush mounted radomes to name a few.

In order to facilitate the use of the new solutions developed here,

Tables 1 through 3 summarize the most important results.
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A.

TABLE 8.1
IBS SOLUTIONS

Plane Wave Incidence (2-D)

l.

Even problem, edge excited surface wave

Even problem, reflected field

Even problem, diffraction coefficient

Odd problem, edge excited surface wave

O0dd problem, reflected field

0dd problem, diffraction coefficient

Slope diffraction coefficient (even problem)

Slope diffraction coefficient (odd problem)

Surface Wave Excitation (2-D)

1.

Even problem, incident surface wave
Even problem, reflected surface wave
Even problem, diffracted surface wave
Odd problem, incident surface wave
Odd problem, reflected surface wave

Odd problem, diffracted surface wave
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Number

3.200
3.206
3.210
3.233
3.238
3.242
3.255
3.257

3.301
3.315
3.312
3.324
3.329
3.330




TABLE 8.1 (CONTINUED)

Equation
Number
C. Plane Wave Incidence (3-D)
1. Even problem, PEC case, reflected field (E;e) 4,119
2. Even problem, PEC case, edge excited surface wave (E;:) 4,121
3. Even problem, PEC case, diffracted field (E;e) 4,123
4, 0dd problem, PEC case, reflected field (H;o) 4,133

SwW
5. 0dd problem, PEC case, edge excited surface wave (Hyo) 4,135

de
- 6., 0dd problem, PEC case, diffracted field (Hy ) 4,137

D. Surface Wave Excitation (3-D)

. ' rsw
1. Even problem, PEC case, reflected surface wave (Eye ) 4,162
dsw
2. Even problem, PEC case, diffracted surface wave (Eye ) 2.%9%,
rsw
3. 0dd problem, PEC case, reflected surface wave (Hyo ) 4,171
dsw
4, 0dd problem, PEC case, diffracted surface wave (Hyo ) 4.16;,
4,17
d d
E. Edge Diffracted E; and H; Fields
do
1. PEC case, E, ' 4,200
de ‘
2, PEC case, Hy 4,201
de A
3. PMC case, E; 4,216
do
4. PMC case, Hy 4,217
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TABLE 8.2
DFB SOLUTIONS

A. Fresnel Reflection Coefficients

B. 2-D

Problems

Even diffraction coefficient

0dd diffraction coefficient

Even surface wave launching coefficient
0dd surface wave launching coefficient
Even surface wave reflection coefficient
0dd surface wave refTection coefficient
Even surface wave diffraction coefficient

0dd surface wave diffraction coefficient

Problems

Edge excited surface wave,

SW _SW L.
Eyes Eyo (plane wave incidence)

Edge excited surface wave,

Sw
Hyes Hyo (plane wave incidence)
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Equation
Number

5.14 through 5,21

5.46
5.47
5.52
5.53
5.59
5.60
5.64
5.65

5.74, 5.86

5.75, 5.87




TABLE 8.3

DIELECTRIC/FERRITE HALF-PLANE SOLUTIONS

Reflected field

Dyadic reflection coefficient

Transmitted field

Dyadic transmission coefficient

Edge diffracted field

Dyadic diffraction coefficient

Surface wave field excited by a

plane wave (oblique incidence)

Reflected surface wave (oblique incidence)

Diffracted surface wave (oblique incidence)

Line source excitation
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Equation
Number
6.14

6.16, 6.17, 6.18
6.19

6.20, 6.21, 6,22
6.35

6.37, 6.38, 6.39

6.41, 6.42

6.48, 6.49

6.60, 6.61
6.63 through 6,75



APPENDIX A

FOURIER TRANSFORM IN COMPLEX S-PLANE

In the development of the Wiener-Hopf technique, one can use the
two-sided Laplace transform or the Fourier transform because in the
complex plane both transforms are completely equivalent [32]. Here the
Fourier transform is used. In this appendix certain properties of the
Fourier transform that are relevant to the Wiener-Hopf technique are
summarized. A detailed discussion of this topic can be found in many

excellent books such as Tichmarsh [56].

Let f(x) be a function of the real variable x. Define the

half-range functions f (x) and f_(x) as follows:

f,(x) = ; ;(x) )’:g (A.1)
£ lx) = "o x>0
i ‘_f(x) x>0 | (A.2)

where the subscript (+) in the function f.(x) signifies that the

function is identically zero for x<0, and the subscript (-) in the
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function f;(x) means that this second function is identically zero for

x>0. Therefore, f(x) can be represented as

f(x) = fo(x) + f_(x) . (A.3)

Furthermore, assume f (x) and f_(x) have the following asymptotic

behavior:
T X
fo(x) ~Ae as x + o (A.4)
T, X
f_(x) ~ Be as X » -o . (A.5)

Next, let s be a complex variable such that

s =o+irt (A.6)

where o and t are real variables.

The Fourier transform of f.(x) is defined by [32]

R 1 ® :

Fo(s) =2 [ f.(x) e % dx ] f.(x) e °% dx

-00 (A.7)

where ?+(s) is regular in the upper s-plane defined by t > t_ [32].
| The above integral is interpreted as a Riemann integral [34] and it
will exist provided f (x) satisfies certain conditions [32,56]. Since
most of the functions in engineering applications are sufficiently well

behaved, their Fourier transforms uéua]]y exist.

Similarly, the Fourier transform of f_(x) is defined by

) - . 0 :
F(s) = /o= | f.(x) e dx =/ | f.(x) &% dx (A.8)

where F_(s) is regular in the lower s-plane defined by t < 7, [32].

343



Finally, the Fourier transform of f(x) can be written the following

way:

F(s) = vo— | flx) % dx (A.9)

where F(s) is regular in the strip defined by 7_ < 1 < 1

+» and the

inverse transform of E(s) is given by [34]
=a . -isx

1
f(X) = /=2=_"== f y F(S) e ds . T < a < 'l'+ . (A.].O)
-co+1a

It follows from Equations (A.7), (A.8) and (A.9) that
F(s) = F (s) + F_(s) . (A.11)

In solving the Wiener-Hopf equation, it will be necessary to know
the asymptotic behavior of F_(x) and F_(s) which is related to the

behavior of f (x) and f_(x) as follows [34]:

if f+(x) ~xP as x » 0+, then (A.12)
F.(s) ~ p-1 i > ;

+(s S as |s| » = in t> T ; (A.13)
if f_(x) ~xP as x » 0-, then (A.14)
< -p-~1 .

F_(s) ~s as |s| » = in 1< T, . (A.15)
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In Chapters III and IV the Fourier transform is applied to the
scalar Helmholtz differential equation. Thus, it is importaﬁt to
define the Fourier transform of the second derivative of f(x). This is
done in [32] and only the result will be shown here. If E(s) is the
Fourier transform of f(x), it follows that the Fourier transform of

d2f(x)

is given by [32]:
dx?

aZf 2f(x) 5 2
ax2 =-s2F(s) , T <T<Ty (A.16)

where ?; is the Fourier transform operator such that

8

1
1? (f(x)] = /om {, f(x) e'S% 4 , T <T<T, . (A.17)
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APPENDIX B

RADIATION AND EDGE CONDITIONS

In Chapters III and IV it is necessary to solve the following
scalar Helmholtz equation:

|m 2, 32,
e Pzt flxy) =0 (B.1)

where K is a complex constant with its real and imaginary parts
positive, and where the region of interest in the x-y plane will involve
boundaries at infinity and geometrical singularities. In order to
obtain unique solutions it is necessary to apply two physical
constraints. The first condition known as the radiation condition [57]
deals with the behavior of the fields at infinity due to real or
equivalent sources contained in a finite area of the x-y plane (for 2-D
problems). If the medium is lossy, i.e., k2 #0, the radiation condition
dictates that the fields have to vanish at infinity. On the other hand,
if the medium is lossless, i.e., k, = 0, and isotropic [34], the
solutions of Equation (B.1) have to represent traveling waves
propagating toward infinity. Mathematically, this condition dictates
that the solutions of (B.1l) have to satisfy the Sommerfeld radiation

condition given by [45]
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) 1/2 9 . - .
Lim (p) 30 - 1K f(x,y) =0 (B.2)
pro _
where
1/2
p = (X2 + yZ) . (B'3)

It follows from Equation (B.2) that

c e’Kp

f0d)~75W7 as p + (B.4)

where ¢ is an arbitrary constant. Note that it was emphasized that the
sources have to be confined to a finite area of the x-y plane, however,
in Chapters III and IV it is assumed that a plane wave is incident on
the diffracting geometry. Thus, the asymptotic behavior of the fields
(for plane wave incidence) has to be interpreted carefully.

The second physical constraint which deals with the behavior of the
fields near geometrical singularities is the edge condition. First
irtroduced by Meixner [58], it insures that the total electric and
magnetic energy stored in any finite neighborhood of an edge will be
finite.

For the geometry considered in this sthdy which is depicted in
Figure 3.1, it is difficult to obtain the edge conditions. However, as

shown in Chapters III and IV it is enough to know the following

information:
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The most singular behavior of the fields near the origin (see

Figure 3.1) is [34,21]:
_ T
E29 HZ = 0(9 ) (B.S)
for the tangential components (Ez, HZ) , and

£, Hy = 007 "T) (8.6)

for the transverse components (Ey, Hy). The edge condition is satisfied

if the constant T is restricted to the domain t > 0.
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APPENDIX C

SPECIFICATION OF THE VALUE OF 8 = (K% - s2)/?2

In this appendix, the double-valued function 8 defined by

B = (K2 - s2)}/2 (€.1)

will be uniquely specified. Recall that s is the complex variable in
the Fourier transformed domain given by

s =g +irT (C.2)

and K is equal to

K =K + iKp = ksin®' = (kq; + ikp) sin8' , 0 < @' <= . (C.3)

It follows from Chapter I, that

Ki, K2 > 0 (C.4)

and it will be assumed that the following constraint is satisfied for
analytic convenience

Ky >> Ky . (C.5)

Because of the radiation condition given in Appendix B, the
double-valued function B has to satisfy the following two conditions

along the Fourier inversion path:
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Im (8) <0 (C.6)

and

Re (B) » 0 . (C.7)
Conditions (C.6) and (C.7) will insure that the solutions of the Fourier
transformed wave equation will represent either outgoing or evanescent
waves for large |y|. Note that the function B has two branch points
located at

s = K . (c.8)

To specify B uniquely, it s convenient to view the complex s-plane
as a two sheeted surface with the sheets connected along the branch
cuts. In each sheet, B is a single-valued analytic function of s. The
choice of branch cuts is arbitrary, but for the problems considered
here, a particular set of branch cuts will be defined based on the
restrictions given by Equations (C.6) and (C.7).

The branch cut of 8 in the s-plane is defined such that Im (B) > 0
on one sheet, which will be called the top or proper sheet, and Im (B) <
0 on the bottom or improper sheet [34]. This definition implies that
the two sheets are connected by the curve defined by Im (8) = 0 which
locates the desired branch cut.

In order to obtéin the branch cut curve, it is necessary to first
write g2 as

2 2 2 2 2
B =K -5 = (K3 +iKy) - (o+in) (C.9)

or

2 2 2
B =(Ky =Ky -a +1)+2i(K K,-01) . (C.10)
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Next, the complex s-plane is divided by the curves Re (8%2) = 0 and
Im (82) = 0 as shown in Figures C.1 where the horizontally shaded
regions correspond to Re (B2) < 0 and the vertically shaded regions
correspond to Im (B2) < 0. The unshaded region corresponds to both
Re (82) > 0 and Im (82) > 0. Note that the Re 82 = 0 implies that

2 2

2 2
Ky =Ky-o +1 =0 (C.11)

which is the equation of a hyperbola. On the other hand, the condition
Im (82) = 0 implies that

Ky Ky = ot (€c.12)

and solving for t one obtains

T = Kl Kz/o s (C.13)

Furthermore, the constraint Im (B2) > O can be expressed as

K1 K2 > ot (C.14)
or
K1K2
<73 o> 0 _
T (C.15)
K1Ko
> 5 <0 .

To insure that Im (B) > 0 on the entire top-sheet, it is required
that the argument of 82 be restricted to the domain given by

0 < Arg (B2) < 2« (C.16)
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on the top-sheet. This dictates that a]dng the branch cut

Arg (B2) = 2n . (C.17)
It follows that the branch cut is described by the equations
Im (82) =0 and Re (82) > 0 . (C.18)

Thus, the branch cut of the function 8 depicted in Figure C.2 has been

uniquely determined. It follows from Equation (C.16) that
2m < Arg (B82) < 4= (C.18)

and Im (B) < 0 on the entire bottom sheet as required. The bottom sheet
is shown in Figure C.3 and the signs of Re (B) and Im (B) on the entire
two-sheeted s-plane are summarized in Table C.1. For the special case
of k2 = 0, the two sheets of the s-plane are depicted in Figures C.4

and C.5.

TABLE C.1

SIGNS OF Re (B) and Im (B8)

Re (8) | Im (B)

TOP
SHEET

+

il
BOTTOM
SHEET [
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S-PLANE

2
¥
Z

Figure C.2. Top sheet:

S-PLANE

w HYPERBOLIC
BRANCH CUTS OF B

Im (8) > 0.

A
/9?%
/) /

Figure C.3. Bottom sheet:

=0

wnn HYPERBOLIC
BRANCH CUTS OF B

Im (8) < 0.
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) %I:n,ﬁ =0,

Ref =0

-K

a{/f//
/4 |
7 B =

Figure C.4, Top sheet: Im (B) > 0, K = Ky

S-PLANE W1 V// g
“ E/Z/////‘

7

/)
Ime;o/7/- RCB{::

waren HYPERBOLIC
BRANCH CUTS OF B

Figure C.5. Bottom sheet: Im (B) <0, K = Kl'
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APPENDIX D

FACTORIZATION OF THE FUNCTIONS GE(s) AND GO(s)

The factorization of a function G(s), which is regular and free of

zeros in a strip t_<t<t,, means that G(s) can be expressed as the

+9

product of two functions such that

G(s) = G.(s) G_(s) (D.1)

where G+(s) and G_(s) are regular and free of zeros in the upper and
Tower half s-planes Im(s)>t_, and Im(s)<t,, respectively. There is a
formal procedure for obtaining G (s) and G_(s) [32,34]. That is, if
G(s) has the properties mentioned above, and G(s)+1 uniformly as |s|+=
inside the strip t_<Im(s)<t,, then [32,34]

1 "¢ ogl6(u)]

G,(s) = exp Py Tuos du ,» T_<c<rt<T (D.2)

- -ot+iC

is regular and free of zeros in the upper half s-plane defined by

Im(s)>t_, and

-1 " ogla(u)]
G_(s) = exp ' prey / s du , T_<t<d<T (D.3)
- -o+id
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is regu]ar’and free of zeros in the lower half s-plane defined by

Im(s)<r+, Note that a branch of the logarithm is choosen so that

%iT Log[G(s)]=0 within the strip t <twt_. Furthermore, the functions
S{ >

G,(s) and G_(s) have the following properties:

6_(s) = G,(-s) (D.4)
and each tends to unity in that half-plane in which it is analytic
[371.

1. EVEN Function

In this case, the function GS(s) is given by

B
T ks (0.5)

GE(s)

which is regular in the strip defined by -Im(K)<Im(s)<Im(K). Define the

function ¢(s) as
K$§
Ws) = 67Ns) =1+ (0.6)

where B was defined in Appendix C. The function ¢(s) will be factorized

into the product of the functions ¥,(s) and ¥_(s) such that
¥(s) = v, (s) v_(s) . (D.7)

It follows from D.7 that

68(s) = v ' (s) | (0.8)

and

68(s) = v (s) . (D.9)
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The first step in the factorization of Y(s) is to take the
logarithm of (D.7), that is
Loglw(s)] = Loglw, (s)] + Loglw_(s)] . (D.10)

As suggested by Weinstein [37], it is easier to factorize the function
v'(s)/v(s). Thus, taking the derivative of (D.10), one gets

v'(s)  wis)  w'(s)
W(s) T e (s) T u(s)

X(s) = = X, (s) + X_(s) . (D.11)
Substituting (D.6) into (D.11) yields

K8 s

X(s) = EZTEIEEY . (D.12)

Note that the branch points *K of B are also poles of X(s). Thus, the
factorization of the function ¥(s) reduces to the decomposition of X(s).

It follows from [32,37], that

wt+id

-1 X(u)
X_(s) = Py gos du o, T << d < T, (D.13)
-wt+id
and
X, (s) = Py s du , T <c<T<UT (D.14)
-otiC

where t_=-Im(K) and t =Im(K). The function X_(s) will be computed
first, followed by X (s). First of all, the path of integration is
deformed upward in (D.13), so that it encloses the branch cut K++i= as

shown in Figure D.1. Next, assume there is a pole u_ (that is,

P
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B(up)=-K6) enclosed by the contour. Note that up is enclosed by the
contour if Im(K8)<0. Then,

X (s) = 2m [Res(up) +Res(#K)) - [ - [ - [ (D.15)
r c:1 c2

where the contours T, s and C, are depicted in Figure D.1. It can be

shown that the integration along the contour T does not contribute to

X_(s), that is

[ G du=0 . (D.16)

Define the constant E such that

 COSE = & 0 < Re(E) < n/2 (D.17)

where Im(8)<0 implies Im(£)>0. It follows from (C.1) that

up = Ksing . (D.18)

Now, the residues at up and +K can be computed such that

1
Res (+K) = E;;gaz:;; (D.19)
and
-1
Res(up) = 271 (Ksink-s) . (D.20)

Substituting (D.19) and (D.20) into (D.15) yields

1 1 K8 udu
X(s) = 2(K-s) * s-Ksing * o c£ B (u-s)(Bl;Klaz) . (D.21)

Note that along the contour o, Im(8)=0, and Re(8)>0.
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Figure D.1. Integration path of Equation D.15.

Ima

/] TOP SHEET OF B -SURFACE

Figure D.2. Integration path of Equation D.25 in periodic a-plane.
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The next step in the analysis is to map from the u-plane to the a-plane.

That is,
u =Ksin a . -7 < Re (a) < = (D,22)
B=Kcos a (D.23)
and .
s =Ksingo (D.24)

where it is assumed that Im(K)=0 for convenience. The mapping in (D.22)
and (D.23) is discussed in more detail in Appendix F. Substituting

(D.22), (D.23) and (D.24) into (D.21), the last term in (D.21)

becomes
ke udy -C0S§ Sinada
F ! = 1K (D.25)

c, B (u-s)(p2-k242) Coq (sina-sing)(sin2a-sin2E)

where Coa is shown in Figure D.2, Evaluating the integral along Cou?

one finally gets [37]

1 1 1
X_(s) = + - ~
2(K-s) 2(s-Ksin) 27Kcos o

o+§ m+o-§ l

sin(S#E) sin(n+3-£) I

(D.26)
Substituting (D.26) into (D.11), and integrating X_(s), one obtains

) Y2
s1n€-s1na -
V_(Ksina) = 1sina exp E;'J(a) , 0 < Re(g) < m/2 (D.27)
where
at§ t
da) = [ Gt (D.28)
atn-£
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Note that the fact that ¢_(-i=) = 1 has been used to obtain (D.27).
Using the identity ¢ _(s) = y_(-s), it follows that v, (s) is given by

. a2
sing+sina -1

exp | 7 J(-a)| , O<Re(E)<n/2, (D.29)

w+(Ksina) = I 1+sina

Substituting (D.27) and (D.29) into (D.9) and (D.8), respectively,

yields

) |1/2
l+sina |

1
GS(Ksina) = exp | 5= (-a)| , O<Re(E)<r/2  (D.30)

sing+sina ‘

which is regular in the upper half s-plane defined by Im(s)>-Im(K), and

) 172
1-sina

GS(Ksina) = exp | 57 J(a)| , O<Re(E)<n/2 (D.31)

sing-sina ‘

is regular in the lower half s-plane Im(s)<Im(K).

2. 0DD Function

The odd function is given by

1 6%(s)

6%(s) = 353 = : (D.32)

Note that the function B can be expressed as

1/2 172
B = (K-s)  (K+s) (D,33)
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1/2 .
where (K-s) is analytic in the lower half s-plane defined by
: 1/72 '
Im(s)<Im(K), while (K+s) is analytic in the upper s-plane

Im(s)>-Im(K). Substituting (D.33) into (D.32) yields

63(s) G2(s)

6°(s) 72 7 .

I 17
(K+s) (K-s)

It follows from (D.30), (D.31), and (D.34) that

o exp[1/2% J(-a)]
G+(Ksina) = i72 » 0 < Re(Eg) < «/2
[K(sing+sina)]

is regular in the upper half s-plane Im(s)>-Im(K), and

o exp[1/2n J(a)]
G_(Ksina) = 172 ,» 0 < Re(g) < 7/2
[K(sin;-sina)]

is regular in the lower half s-plane Im(s)<Im(K).
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APPENDIX E

0
DECOMPOSITION OF THE FUNCTIONS D°(s) AND D°(s)

The decomposition of the function D(s), which is regular in the strip
t_<Im(s)<t,, means that D(s) can be expressed as the sum of two
functions D+(s) and D_(s) such that

D(s) =D,(s) +D_(s) (E.1)

where D+(s) and D_(s) are regular in the upper and lower half s-plane
defined by vt_ and <t , respectively.

There is a formal procedure for obtaining (E.1) [32,34], however,
for the functions needed in this study, the decomposition can be
achieved by inspection. First, the function in Equation (3.62) will be

considered, followed by the one defined in (3.128).

1. EVEN Function
The function De(s) is given by

ivk}(l-Re) ei(s)

D%(s) = 0%(s) G5(s) = ; E.2
s (s) G,(s) /75 5 (s5k) (E.2)

where Gi(s), which was computed in Appendix D, is regular in the

half-plane Im(s)>-Im(k). Substituting (3.83) into (E.2) yields
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. ivky (1-R,) | -63(s) 1 |
D™(s) = oty i (E.3)
/Zn kGe ;}s+kx) G (s) (s+kx)_

where r_=-Im(kx), 1, =Im(k), and Gf(s) is regular in the lower half plane

Im(s)<Im(k). The second term in (E.3) can be rewritten as follows:

1 1 1 1 1
v = ' - 1 + ' 1 e (E.4)
B2(s) (s#k,)  (s*k) | 63(s)  G3(-k,) | (s#k,) GZ(-ky)
Substituting (E.4) into (E.3), one obtains
ivk'(1-R ) 1| 1 -
0°(s) = ——— — |- &)
2% k8, | (s*k,) | 6(-k)) _
— _
1 1 1 i i
+ ) - ) . E.
(s+k,) | 65(s) ef(-kx)_l ‘ (E.5)

After studying carefully the expression in (E.5), one concludes that the
first term in (E.5) is regular in the upper half-plane Im(s)>t_, while
the second term is regular in the lower half-plane Im(s)<t,. Thus,

DE(S) and Df(s) are given by

3 ]
1vky(1-Re) 1

DS(s) = - 65(s) (E.6)

VZn kdg (s+k,) |_gf(_kx)
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and

ivky(l-Re) 1 1

) - . — .= . (E.7)
2% k8, (s+k) 62(s)  GI(-k,)

De(s

2. 0DD Function

It follows from (3.128) that

X

where Gi(s), which is defined in Appendix D, is regular in the upper

half-plane Im(s)>-Im(k). Solving for B in (3.121), one gets

B = - ké . (E.9)

Substituting (E.9) into (E.8) yields

. 0
v1(1+RO) 1 k60 G+(s)

D°(s) = ; - : (E.10)
T2 | (s )B2(s)  (s+ky)

where G?(s), which is also defined in Appendix D, is regular in the

Tower half-plane Im(s)<Im(k). The first term in (E.10) can be rewritten

as follows:

1 1 1 1 ‘ 1

= - s ‘ +

(s#,) 6°(s)  (s+k) | 6%(s) 6%(~k,)_

(s+k.) 62(-k,) (E.11)

Substituting (E.11) into (E.10), one obtains
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vi(1+R0) 1 1 1

D0(s) =

T | (sw) | 6%s) 62(k,)

1 l 1

+ T - k8,6(s) . (E.12)

(s+k_) |_pf(-kx)

It follows from (E.12) that Dg(s) is given by

iv(IeR ) | 1 -
0 0
Di(s) = - k8 G, (s) (E.13)
) (st} /25 | &2(k) ~ Ot

which is regular in the upper half-plane defined by Im(s)>t_, and D?(s)

can be expressed as follows:

1v(1+Ro) 1 1

0%(s)

- ; . . E.14)
TZR (s+,) | G2(s)  G2(-k,) (

which is regular in the lower half-plane defined by Im(s)<r,.
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APPENDIX F

ANGULAR SPECTRAL MAPPING

1. Mapping to the periodic y-plane.

To simplify the analysis, assume that K=K1 is real, that is,

Im(K)=K2=0. Next, let

s =K sin ¢ (F.1)

where s was defined in (C.2) and ¢ is given by

Y=u +iv . (F.2)

Substituting (F.2) and (C.2) into (F.1) yields

o = K sinu coshv ; t = K cosu sinhv . (F.3)

It follows from (C.1) and (F.1) that
2 2 2 1/2
B = Br+181 = (K -K sin ¢) = K cosy (F.4)

where

8. = Kcosu coshv. By = -Ksinu sinhv . (F.5)

Note that Equations (F.3) and (F.5) map a finite-width strip (width of
2n) in the y-plane to the entire two-sheeted plane of B(s) depicted in
Figures (C.4) and (C.5).

368




In order to have a one-to-one mapping, the real part of ¢ is
restricted to the interval -m<Re(y)=u<w. This can be achieved by an
inverse mapping from the two-sheeted plane of B(s) to the y-plane. The

inverse mapping can be obtained by solving for ¢ in terms of s and 8(s)

such that
8 .
cosy = ¢ (F.6)
and o
is
isiny =X . (F.7)

Adding (F.6) and (F.7), one gets

. +i

cocw 4+ dicind = n"‘l) = BHTS c Q)

oy LR NEA 4 L3 K . \l .U,
Taking the logarithm of both sides of (F.8) and dividing by i yields

B+is

v = -ilog | % (F.9)
where

Log(z) = Log|z| + i Arg(z) ; -m <Arg (z) < = . (F.10)

It follows from (F.9) and (F.10) (or ffom (F.3) and (F.5)) that the
two-sheeted plane of B(s) maps to the y-plane as shown in Figure (F.1).
The top-sheet maps into the region indicated with cross-hatching, and
the branch cuts of B(s) in the s-plane become the lines depicted in
Figure (F.1). It is obvious that the effect of the mapping is to open
up the function B(s) so that the branch cuts of B8(s) are replaced by

lines in the y-plane.
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One of the reasons for mapping into the y-plane is that it is
easier and more natural to perform the asymptotic evaluation of the
inverse Fourier-Transform in the y-plane. This mapping is usually

referred to as the Angular Spectral mapping.

2. Mapping to the w-plane

In order to have the saddle point of the integrands in the inverse-
Fourier Transform integrals equal to the observation angle ¢, it is
necessary to make one more mapping, which is a simple translation of the

imaginary axis of y. That is, let w be equal to

w=a+1'Y=lp+';=u+%+1'v . (F.11)

Substituting (F.11) into (F.1) and (F.4) yields

s = -Kcosw = -Kcos (a+iy) (F.12)

and

w0
1]

Ksinw = Ksin(atiy) . (F.13)

Expanding Equations (F.12) and (F.13) one obtains

o = -Kcosa coshy , 1 = Ksina sinhy v (F.14)

Br = Ksina coshy . B = Kcosa sinhy . (F.15)

The w-plane is depicted in Figure 3.7. Note that the real part of w is
restricted to the interval

3

- %‘< Re(w) = a <77 . (F.16)
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WV -PLANE
k=k (REAL)

K
E; |

-

IMAGE OF HYPERBOLIC BRANCH CUT OF B (s) FROM -k
IMAGE OF HYPERBOLIC BRANCH CUT OF B (s) FROM +k
— = e |MAGE OF Ims~-AXIS OF THE TOP RIEMANN SHEET
IMAGE OF REAL s-AXIS OF THE TOP RIEMANN SHEET

/| TOP SHEET OF Bls) -SURFACE WHERE Imf8>0

Figure F.1. Periodic y-plane.
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APPENDIX G

SADDLE POINT METHOD I

1. One Pole Near Saddle Point

In this section a method is discussed for evaluating a particular
integral by the saddle point approximation technique. This method is
discussed in more detail in [38].

Assume that the integral is of the form

K
I(K) = | M(z)ekF(Z)g (6.1)

C
where K is real and positive, and the path C is choosen so that the

integral converges. Let Zg be an isolated, first order saddle point of

the analytic function f(z). That is,
f'(z)) =0 and  f(z;) # 0 . (G.2)

Also assume that M(z) is an analytic function, except at a finite number
of singular points which are not close to the point Zg. Furthermore,
assume M(z) has one simple pole Z; close to the saddle point. Next,

define the transformation

f(z) = f(zs) - u2 (G.3)
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from the z-plane to the u-plane, where the descending part of C is

mapped onto the positive real u-axis. It follows from (G.3) that
Kf(z_) dz _, ?
I(K) =e 5 [ Mz) gze™ (6.4)
dz
where one assumes that g, has no poles close to the saddle point.
Therefore, the function Nl(u) given by
M(z) du

N (u) = (u-u,) (G.5)

is analytic in the neighborhood of Uy and u=0, which means that it can

be expanded in a Taylor series such that
Ny(u) = Amum . (G.6)
m=0
Now, define ay such that
a; =1 [f(zg) - f(z)1 . (6.7)

Substituting (G.6) into (G.4), and assuming K is large, yields

Kf(zs) w
I(K) ~e AL (G.8)
m=0 :
where
- uMe ~Ku (u+uy) du
=/ u> + ia . (6.9)
-0 1
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In practice, usually the first term in (G.8) is computed. That is,

for K sufficiently large

IS(K) ~ exp (Kf(zs)) Ay I, . (G.10)
It is shown in [38] that
1/2
-2 - 14
and
ikay |7w —11/2 't2
- — -i
I,=2u e a / e dt (G.12)

where ¢ is depicted in Figure G.1. Substituting (G.11) and (G.12) into
(G.10) yields

ié

I (K) ~ M(z) exp(Kf(z)) e ° F(Kap) (6.13)

Kf“(zs)

where F(Kal), which is referred to as the transition function [11], is
defined given in (3.197). In order for F(x) to converge, the argument

1/2 1/2
of x is restricted to [41] -3n/4 < arg (x ) < n/4.
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2. Two poles near the saddle point

Now assume M(z) has two poles, z, and z,, near the saddle point z..
In this case, the function Nz(u) given by
dz
Nz(u) = M(z2) a;‘(u-ul) (u-uz) | (G.14)
is analytic in the neighborhood of u=0, ugs and Upe Thus, Nz(u) can be

expanded in a Taylor series such that

N

around the point u=0, Substituting {G.15) into (G.4) and for large K,
one obtains

IS(K) ~ exp(Kf(zs)) y ¢n In (G.16)

m=0
where
" 2

~ o yMe™

In = I (u-u;)(u-u,) du (6.17)
and

The denumerator of the integrand in (G.17) can be expanded in partial

fractions such that

1 1 utu, utu,

I
i |

(u=u Y(u-u ) "y -u | u24ja - u?+ia
I

. (6019)
1 2 1 2

— —-—
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Thus, Im can be rewritten as follows:

- 2 " utu utu,
1 | ume'Ku 1 2

~

Im - up-up u‘+1’a1 - u‘+1‘a2 du : (6.20)

Again, keeping only the first term in (G.16), IS(K) is given by

I.(K) ~ exp(Kf(zS)) ¢, Iy ‘ (6.21)
where
172 |~ iKa
~  2(m) u, e ! ® . 2
I = 1 1/2 f e-1t dt
0 ul'uz ‘ (al) 1/2
_ (Ka,)
iKa -
e ? uy -it?
"GOz i e dt . (6.22)
2 1/2
(Ka,) _

The constant c_ is easily evaluated by setting z=z, (u=0) in (G.14) such

that

dz
c, = Ny(0) = M(z,) Eﬂ" (-up)(-uyp) . (G.23)

Z—ZS

Furthermore, it is shown in [38] that

| 172}
dz - -2 -

_— 1.‘"s
du

e (G.24)
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Substituting (G.22)-(G.24) into (G.21) yields

12 | (Kap) R (Ka))-(Ka)) PR (Kay)

i —=2r —
IS(K)“M(Zs)eXP(Kf(Zs))e E?“?;;T (Ka2)1’2 _ (Kal)l/z
(G.25)
]
COMPLEX z-PLANE |

Figure G.1., Definition of the angle b . The direction of integration
along the path SDP is indicated by the arrowhead.

(Figure copied from: Proceedings of the IEEE Vol. 55,
August 1967, pp. 1496-1497, R.H. Schafer, R.G. Kouyoumjian)
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APPENDIX H
SADDLE POINT METHOD II

(One Pole Near Saddle Point)

In this section, the evaluation of (3.231), when the saddle point

79

zZg is z =", is discussed. The saddle point method used here is the one

developed by Felsen and Marcuvitz [42]. It is shown in [42], that the
first term in the asymptotic expansion of (G.1) when a simple pole z, of

M(z) is near the saddie point, is given by

2 172 —
£2ia/ ™ Q7ib/R] + (¥)  T(0) | ,

I (K) ~ exp(Kf(z,))

In(b) 2 0, K + (H.1)
where
a = Lim [M(z)(z-2;)] (H.2)
z+2;
|~ Tlir2 - Tlir2 )
1/2 - 2 1¢S
b = (f(zg) - f(z;)) ; h = ;;TEET ?;?;;7 e
(H.3)
T(0) = hM(zg) + ¢ (H.4)

and
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° 2
Qy) = JeXdx . - (H.5)
y
Z1-Zg
The argument of b is defined [42] so that b » Thooas zp +zg.

Since the function Mo(z), defined in (3.227) is equal to zero when

$=™s it follows that

a
T(0) =+ K (H.6)

Since Mo(z) has two simple poles at zl=n-¢' and 22=n+¢' (¢'#0), the

asymptotic evaluation of (3.231) is given by

a

‘ o .. 22
I (K) ~ exp(kof(z,))| 2ia /T exp(-keb,)QL-iby/K6] + (v/(kp)) b,
- -
2 172 1
-‘ -2ia;/7 exp(-keb;)QLiby/Kp] + (v/(kp)) 3~
1
(H.7)
where
by = -2 sin(ersa) In (b)) <0 (H.8)
by = vZe ™ sin(e'/2) = by, Im (b)) >0 (H.9)
and '
flz) =1 : (H.10)

Since b2 = 'bl’ Equation (H.7) can be rewritten as follows:
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| |
I (K) ~e'kP 21/F'exp(-kpb2) Qr-ibyYkp] + (n/(kp))m/b2 (a+a,) .

(H.11)

Next, the constants ay and a, are evaluated. Substituting (3.227) into

(H.2), one obtains

N T o PRI ¢ RV ¢ JN .n\-\l/z
-V Sing L{SInE -CoS¢ }(Sing +coséo') |
a1 = 2mi 0,2
(sin¢'+sing")
|__-_].'_ (0] ' 0/ . -
* exp 2 [Jl(“'¢ ) + J1(¢ )] (H.12)
and
. e . 0 . 0 (172
v sine'[(sing -cosé')(sinE +cosé')]
a, = 32
2 2m (cosso-sin¢')(cos§°+sin¢')
I—i ] ' O,/ .
cexp | - [Jy(n+e') + Ji(e')] (H.13)
where
2 2
b2 = 2isin (¢'/2) = i(l-cosé') . _ (H.14)

For large |/kKp b,|, the first term in (H.11) becomes [42]

3

2 172
2i/m exp(-keb,) Q[-ib, YKp] ~ -(n/(kp)) /by as |/kp by| »e.

(H.15)

Thus, when |/Kp b2| is very large, IS(K) which is approximated by only

the first term of its asymptotic expansion, approaches zero as expected.
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APPENDIX I

EXPRESSIONS FOR ﬁx

7 AND Hx,z

IN TERMS OF Hy AND Ey

Evaluating Equations (1.1) and (1.2) in rectangular coordinates

one obtains the following six equations:

oE oF
. .Y X
TkngH, = 3% = %y (1.1)
' 3E,  oF,
ikn H =7 - — (1.2)
(VA oz '} 3
3E, o
: - Y
1knon T3y Tz ‘ (1.3)
aHy  3H
. X Y
TkYoE, = Iy (1.4)
e, e S
kY Ey = 5= - 5 (1.5)
oH oH
. .y Tz
KYE =% - % ] (1.6)

Taking the Fourier transform of (I.1) through (I1.6) with respect to x,
and assuming all the field components have a z-dependence of the form

exp(ik‘zz) yields
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ikn H, = -isEy v (1.7)
Tknghy = ik, E + isE, (1.8)
~ aéz | PN
1knon 3 1kZ Ey (1.9)
. aH,
1I<Y0EZ = 3;"+ 1sHy (1.10)
A ~ t A
1kY0Ey = isH, - 1kZ H, (I.11)
- I A a':ly
1kYOEx = 1kz Hy oy . (1.12)
Furthermore, it follows from (3.31) that
32E-i 2
w2 - B Ei fory>0 , i =x,y,2 (1.13)
and
22H; 2
wE = -8 H, fory >0 , i =x,y,z . (1.14)

Taking the derivative of both sides of (I.9) with respect to y and using
(I.13) yields

ikn, 3y = -8 E,- ik, 3y . (I.15)

Substituting (I.15) into (I.10) and after some simplification one

obtains

~ v 3Ey(s,y,2)
knos Hy(s,y,z) + 1kz — Ty

Ez(s,y,z) = 3 . (1.16)

(s + k;z)

382




»

The expression for Hz can be obtained in a similar fashion, however, it
is easier to use duality [20]. That is, substituting (I.16) into
(4.109) (where y is replaced by z), one obtains

ikz angs,y,z) - kYos Ey(s,y,z)
" : y
Hz(sa.Ysz) = 2 12 . (1.17)
(s +k,) ,

The first step in solving for Ex in terms of Ey and ﬁy is to take

the derivative of (I.17) with respect to y such that

] 2 A ~
aﬁ -1k, 8 Hy - kYos aEM
Z % (1.18)
3y (QZ : |.'2\ *
s *K, )

where equation (1.14) has been used to simplify (I.18). Substituting

Equation (I.18) into (1;12) and after some simplification, one gets

' A ~
ikz Hy(s,y,z) +sY, aEy(:,y,z)
y

E (s,y,2) = . (1.19)

) 2 12
iY, (s +k,)
Again, to get the expression for Hx’ one can. follow a similar procedure
as the one used to obtain Ex’ However, it is much simpler to use
duality, Thus, substituting (I.19) into (4.109) (where y is replaced by
x) yields

-~ [}
sn, angs,y,z) -'1kZ kEy(s,y,z)
Y

H (s,y,z) = . (1.20)

, Z 12
in, (s +k,)
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APPENDIX J

CALCULATION OF THE FRESNEL REFLECTION COEFFICIENTS OF A GROUNDED
DIELECTRIC/FERRITE SLAB USING THE TRANSVERSE RESONANCE METHOD

Figure (J.1) illustrates the geometry for the problem ;onsidebed in
this appendix. The dielectric/ferrite slab has a thickness t, and it
can be backed by either a perfect electric conductor (PEC) or a perfect
magnetic conductor (PMC). Region 1, which is characterized by (el,ul)
is the region y»0, while Region 2, characterized by (ez,pz) is the
region -t<§<0. A plane wave is incident on the slab at an angle 61 from
the y-axis. The transverse resonance method [21] models the geometric

depicted in Figure J.1 by an equivalent transmission line circuit as

&
&
¥h 5"
A
*y REGION
Q (¢, m

shown in Figure J.2.

z PEC OR PMC ¥

8
recion (D

e o ®

~— y--g

Figure J.1. Grounded Dielectric/ferrite slab.
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where

El = (-;sine'cos¢' - §sine'sin¢' - Ecose‘) Ky

cose1 = sind' sing¢' .

It follows from Snell's law that

s1ne1 = N sine2

where

— —1/2
€M

=
n

g1

The characteristic impedances for both polarizations are as

follows:
h K1,2M,2
TEy wave (Hy): 21,2 =73
R Y
) k1,2%1,2
TMy wave (Ey): 21,2 = "o
where
- —1/2
H1,2
n = ; k
1,2 61,2
Bl klcose1

and

(J.4)

(J.5)

(J.6)

(J.7)

(J.8)

(3.9)

(J.10)

(J.11)

(J.12)




Note that Zs’ the equivalent load impedance at y=-t is given by

0 for PEC
o for PMC

. (J.13)

Substituting (J.13) into (J.1) yields

_;122 tan(8,t) for PEC
| iz, cot(th) for  PMC

zin(yéO) = . (9.14)

Next, the Fresnel reflection coefficients for both polarizations

are computed.

I, TE.y POLARIZATION (Hy)

The reflection coefficient for this polarization at y=0 can be

written as follows:

h :
Z;,(y=0) - 7, Hy"
Ry (y=0) = —— P | : (3.15)

When there is an electric wall (PEC) at y=-t, the reflection

coefficient is
.-h h
-122 tan(th) - Zl

o~
Ry (y=0) = . (J.16)
h -izg tan(th) + Z?
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'NORMALIZED T DB) =-13.900 [0° 4

— UTD
—== MM

180°

PLANE WAVE INCIDENCE ()
t =300 d =0.05
€. ® 5405 u_ =1,

o = a5 o' = 90°
e = 501

Figure 8,31. Magnitude of the scattered field E; with the diffracted

dsw

7 included (see Figure 8.30).

surface wave field E
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When there is an electric wall (PEC) at y=-t, the reflection coefficient

can be written as follows:

z;i‘ + 1'232’l tan (8,t)
R®(y=0) = ] (J.21)
a z‘; - izg tan (8,t)

Substituting (J.9) into (J.21), one obtains

€ 2 2 1/2 2 2 1/2
cos® +i &5 (N -sin 61) tan [klt(N -sin 61) ]

€/>_n) =
R_(y=0) = €T 2 2 172 2 2
cos8,-i g5 (N -sin 8,) tan [k,t(N -sin 8,)

Finally, if there is a magnetic wall (PMC) at y=-t, the reflection

coefficient becomes

a  ..a
Zl - 122 cot (th)

Ro(y~=0) = . (J.23)
a .
Z? + 123 cot (th)
Substituting (J.9) into (J.23) yields
Cf1 2 2 1/2 2 2 1/2
cos8,-i &5 (N -sin 61) cot [klt(N -sin 91) ]
R3(¥=0) = 2 77 (9.24)

] 2 2 1/2 2 2
Cos8, +i ;E'(N -sin 91) cot [klt(N -sin 91) ]
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APPENDIX K

RAY-FIXED COORDINATE SYSTEM FOR GO FIELDS

It is well known that the natural coordinate system for the GO
A
fields is the one depicted in Figure 6.1. The propagation vector k

for the incident field defined in Equation (4.4) is given by

kﬂ =k ;1 ’ (K'l)
where
st = -x sin 8' cos¢' - ; sind' sin¢g' - ; cos®' (K.2)

It follows from (6.5) - (6.7) that the unit vectors {G:, Gl, G;}, and

LY

s" are given by

-~

2 -~ 2 2 -
-xsin 0'sin¢'cos¢' + y(1l-sin 8'sin $') - zsin®'cos¢'sing'

u1 = A a
" '
In x s'| (K.3)
n zsinb'cos¢' - xcoso'
u, = P (K.4)
. In x s'| '
~ 3 2 3 ~ 3 2 . 2 ~ .
~p  xsin 8'sin¢'cos¢' + y(l-sin 8'sin $') + zsin8'cos¢'sing’
ull = A ~,
In x s'| (K.5)
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and

s" = —xsin8'cos¢' + ysin@'sin¢' - zcos@' . (K.6)

where n=y, and

A a S22 1/2
In x s'| = (1-sin 8'sin ¢') . (K.7)

Thus, the field components E;., E}, and El can be expressed as

follows:

Eq = (-E; sine'cos¢’ - E;, sing'sing' - E) cose') (K.8)

E; = (-E; sin‘e'sin¢'cos¢' + E; (l-sin‘e'sin‘¢')

. 1
- E; sin8'cosd'sing') T (K.9)
: [n x s']
and
i i i !
E, = (-EX cose' + E, sind'cos¢') . (K.10)
In x s'|

The fields Ei and E; can be written in terms of E; and H; only such that

i . 2 . i
0s8' H, + sin ' cosé' sin¢' E
NoC y $ ¢ y

E = - -~ ~a 2 ‘ (K‘ll)
X In x s'|

: ] ' i tas ' 1.
sine (nocos¢ Hy - cos@'sing¢ Ey)

= .~  ~ 2 . (K.12)
In x s'|

N =
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Substituting (K.11) and (K.12) into (K.8) through (K.10) yields

. .
Es' =0 (K.13)
Ei
i Y
E) = (K.14)
In x s'|
n
i "'y
B, == (K.15)
In x s'|

where E; and H; were defined in (4.4) and (4.42), respectively.

Furthermore, the field components for the reflected field, that is, Eg,

‘E: and Ei are given by

r__r'l ] r"I'l_r‘ )
Eg = -E, sind'cos¢’ + Ey sin6'sing' - E, cos® | (K.16)
-cos9' E; + E; sin8'cos ¢’
ro_
El = Ia - §'| (K.17)
r'zl'l 1 r -20-2| F esnat [Py |
Ex sin 8'sin¢'cos¢' + Ey (1-sin 8'sin ¢') + Ez sind8'cos8'sin¢g
ro_
En_ ~ A'
In xs'|
(K.18)
where
n cose' H - sinze'cos¢'sin¢' Er
0 y y
r
Ey = - ? (K.19)

~ ~ 2
In x s'|
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ef = -—fj:ﬁiljz (E" cos@'sing' + n_cos¢' Hr)
2 jaxsc Y 0 y )

Substituting (K.19) and (K.20) into (K.16) through (K.18) yields

r—
ES =0
r
"oHy
El ==
Lolnx s
gr
B - =
' In x s'|

It follows from (6.3) and (6.4) that

. . | RS + RO ) RE + RQ
E (x,y,z) = Ecyul + HC)’ Ul no '
and
i
e1k e r
Ei(x ¥,Z) = (Gi E n G H.)
2y I ¢y oL ¢y |a x ;.|
where
BT = ks"
F = ; xX+yy+zz .
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(K.21)

(K.22)

(K.23)

(K.25)

(K.26)

(k.27)



Let Fr be the point of reflection (QR) on the x-z plane, that is

Fo= x X, tz12 . (K.28)

] .
sin8'cos¢' - z_ coso') A (K.29)
and
F=r_ +s s (K.30)

where s” is the distance from the point of reflection QR to the
observation point. Substituting (K.30) into (K.27), one obtains

X =X - s"sing'cos¢’ (K.31)

y = srsine'sin¢' (K.32)
- r .

z =2z -5 cos® . (K.33)

Solving for s" from (K.32) yields

. y

s = 275372;7;;7 . y >0 . : (K.34)

It follows from (K.29) through (K.34) that

~

REefobsm o R wsTkmks' o F vk =0 o 7 4 ks™ . (K.35)
Finally, substituting (K.35) into (K.24), one gets

‘*r\ r +-i = ] r

E(s)=E (R) -Re (K.36)
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where

N i .

E'(QR) = uy E} (QR) +u, E) (R) (K.37)
and

= o RS + RQ . . | RE+RP

R = Uy uy > tu u 2 e (K.38)

Fol]owing'the same procedure as above, it can be shown that the

transmitted field can be written as follows:

N s = 4.t '
Et(st) = EV(QR) - T eikS (K.39)

where

L 2 (K.40)

and st is the distance from (QR) to the observation point.
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APPENDIX L

RAY-FIXED COORDINATE SYSTEM FOR DIFFRACTED FIELD

The ray fixed coordinate system for the diffracted fields is

depicted in Figure 6.6. It follows from Equations (6.25) through (6.28)

that
s' = -x sin B cos¢' -y sin B, sine' + 2 cos B, = R (L.1)
3' = -x sing' + § cos¢' (L.2)
-~ ~ ] ~ ] A [}
B' = x cos¢' cosB, + y cosB, sing' + 2z sinBo . (L.3)

Therefore, the field components E;., EL., and EL. can be expressed as

follows:
Ei = -Ei sinB' cos¢' - Ei sinB. sing' + Ei cos Bl (L.4)
s' X 0 y 0 z 0 .
e, - -Ei sing' + 3 cos¢' (L.5)
¢ X y '
e, - Ei cos¢' cos Bl + Ei cos 8' sing' + Ei sin B' (L.6)
B’ X o Yy o> z o ° .

The field components E; and E; can be expressed in terms of E; and H;

only. Thus, it follows from (4.186) that
i 1

Ex " sine@’'

(n, sing’ H; - cos8'cos ¢’ E;) (L.7)
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1

E; = - Sinet (no cosé' Hi + cosf'siné' E;) ’ (L.8)
[}
where 8' = n - Bye Substituting (L.7) and (L.8) into (L.4) - (L.6)
yields
3 |
s! =0 (L.g)
"“o Hi
A
¢| = . 1 (L.].O)
s1nB0
Ei
£, o — (L.11)
‘ Bl S.inB(I) . .

Next, the fields Eg, E:, and Eg are computed. The unit vector § and a

depicted in Figure (L.1) can be expressed in terms of the spherical unit

vectors R and 6 as follows:

w

1]

]
>

cos (6+8') + 8 sin (6+8") (L.12)

cos (6+8') - ﬁ sin (0+9') . (L.13)

w >
]
'
@ >

The point of diffraction QE is given by

R sin(6+8')

24 = sine . " 0<8'<mw (L.14)

and s, which is the distance from the point of diffraction QE to the

observation point (P), is equal to
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Rsin®
sin®’ ’ 0<o'<mx

S=

It follows from (L.12) and (L.13) that

d d ' d _. '

ES = -Ep cos(6+0') + Eq sin(6+8"')
and

d d . d

E8 = -Ep sin(e+8') - Eg cos(6+8')

Furthermore, it can be shown that

d 1~ cos9'sing—
= EZ coso + sing’

d d —€0s6'cos6 -

Ee = EZ sing’ - sin®
and
d
d no Hz
E¢= [ [
s1n80

1 Substituting (L.18) and (L.19) into (L.16) and (L.17) yields

d _

ES =0
_Eg

E(; = ' .
s1nBo

‘ Thus, the diffracted fields Ei and Eg
i |
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are given by

(L.15)

(L.16)

(L.17)

(L.18)

(L.19)

(L.20)

(L.21)

(L.22)




d T~d ' 0
Es Oh1 "cosBo D2 | | Bgt | _-ikReos(e+e')
= I ~ ~,
E‘é ~COoSB, Dgl Dg EQ, 2 2 .
| (1-sin 8'sin ¢) /B
(L.23)
Furthermore, it follows from (L.14) and (L.15) that
i [} | .
-3 ) + k Z . . .
g0, o-TkRcos(e+0') _ o TPz °d ks _ el (QE) efkS (L.28)
é ¢ ¢
. _ '
- ' +Hk_ oz, . . .
E(;. o ikRcos(e+8') _ E(;‘ e Z d e1ks - EL.(QE) oiks (L.25)
and
A a2 A a2 2 2
“Inxs| =]y xs| = (l-sin 0'sin ¢) (L.26)
/p = /RsTn8 = /sTng" | Rsine|'’? = /sing' /5 . (L.27)
sing’ 0
0
Substituting (L.24) - (L.27) into (L.23), one obtains
“d, | T ved | ey
d = '~ ||
_ _ _ _ /s
where
~ 1 '\1." [} '\h' 1 .
D (9,0',8,) = 1/2 [D01 (lo],4',8,) + Dot (|4],6',8,)signe],
i=1,2,
]
0 < By <1
-mr<$p<m (L.29)
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nd ' N nai . Aai ' "Nes
Dy (:0'58,) = 1/2 [D7, (lel,¢"',8)) + D, (lé],¢',8 )signe] , -

i=1,2,
0 < B; <7T
-T < $< T (L.30)
1 _ ~da ' . 1y cce
Dse = { cosé D o(4,6',8)) [cose' - (cos¢ + cose') F3°1

o s : i+ ndh 1 ' 1y oce - - 2
+ cos B, singsing Qyo(¢,¢ 28,) [1 - (cos¢ + coss') F3 1}H/1n x s|

(L.31)
51215 = { sin¢ Dgg(¢',¢,80)[cos¢' - (cos¢ + C°S¢')F§e]
Toose 53:(¢"¢’3;)[‘51”¢' + (cos + coss')Fge}/|n x 5|2

(L.32)

nal ~dh
Dgo = {cos¢ pd

vol#'54,8,)[cose’ - (cose + cose')F1°]

+ coszsosin¢ 53:(¢',¢,80)[sin¢' - (cos¢ + cos¢')Fﬁe]}/|; X §|2

(L.33)
D:g = { COS¢Sin¢' 5‘32(¢I,¢380)[1 - (COS¢ + COS¢.)F§e]

+ sing DJ2(6',4,8,)[-cose’ + (coss + coss')FSETH/[n x §)2

(L.34)
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~ ~ ~a. 172
_eiu/4 (1 - Rg)/z [(sinEae-cos¢)(sin£ae-cos¢')]»

nda
D

(¢ ¢', Bo ) = o '
v 27k s1'n80 (sin¢ + COSEae)

.exp(-(d (¢)+J ©(6'))/(2n))+(sec(8 /2)F(-KLa" )+se(8”/2)F (-KLa"))
(L.35)
_ein/4 (1 + Eﬁ)/z [(sin;m)-cos¢)(singho-coscb')]1/2

nd“u,q» 8) =

Y27k sinBo (sin¢g + cosgho)

-exp(-( (¢)+ (¢ ))/(2n))+(sec(B™/2)F(-KLa )-se(B /2)F(-KLa ))

(L.36)

L =s sin’g.
= s sin"8, (L.37)
Fce(¢ 8, ) = CoS¢' Fie + 2c0528;cos(¢'/2)sin(¢') Fge (L.38)
Fce(¢ 85 ) = cos¢’ Fge + c0528051n¢' er (L.39)
FS2(0',8,) = FS® - F5% cose'/sin(4'/2) (L.40)
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~

Foo(,00) = sing® FSE - cos Y S (o)

ce ] ' : N ) N Vo= = ~ “'
Fi(¢',8,)= s1nBo(s1n80cos¢ - 1cosBo|Ace|/|Bce|)/|n x s'|2

(L.42)

ce, ., , coo e ! . "= = ~ A
F3 (¢',8,)= sinB (sinB cos¢' + icosB |A o |/1B 1)/ xs'|2

(L.43)

sins;cosaae(sin¢'+cosgh°)exp([J?°(¢')-J?e(¢')]/(Zw)]

Fge(¢l’8;)= ~ 2 3 ~ae Zae
In x s'|2 k|Bce|(sin¢'+cosE )(1+sinB cosg™™)

S ~. 1/2
« /2K ((sin&ae-cos¢')/(singho-cos¢')) /sing' (L.44)

2sin(¢'/2) (sin¢'+cosgée)exp([3?e(¢')-32°(¢')}/(2w))

-~ P - ]
In x s'|2 klﬁcel(sin¢'+cosgh°)(1+sin80cosgh°)

- V2K ((singho-cos¢')/(sinEae-cos¢‘))llz/cos(Eae)

(L.45)
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Bhl (30, ey . B2l (&M, B

! . pal (g, (L.46)
DhZ (50, ghey . p32 (gho, ee, (L.47)
D23 (8%, §") o DNl (g, e (L.48)
D3% (&%, £") - 02 (', ¥ . (L.49)
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i - )

INCIDENT FIELD (P)

B =w-8'

0

Figure L.1 Relationship between the unit vectors 6, B, R and s .
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